
GigaScience

Bionitio: demonstrating and facilitating best practices for bioinformatics command-line
software

--Manuscript Draft--

Manuscript Number: GIGA-D-19-00145R1

Full Title: Bionitio: demonstrating and facilitating best practices for bioinformatics command-line
software

Article Type: Technical Note

Funding Information:

Abstract: Background

Bioinformatics software tools are often created ad hoc, frequently by people without
extensive training in software development. In particular, for beginners, the barrier to
entry in bioinformatics software development is high, especially if they want to adopt
good programming practices. Even experienced developers do not always follow best
practices in all the code they develop. A consequence of this is the proliferation of
poorer-quality bioinformatics software, leading to limited scalability and inefficient use
of resources; lack of reproducibility, usability, adaptability and interoperability; and
erroneous or inaccurate results.

Findings

In response to this problem we have developed Bionitio, a tool that automates the
process of starting new bioinformatics software projects following recommended best-
practices. With a single command, the user can create a new well-structured project in
one of twelve programming languages. The resulting software is functional, carrying
out a prototypical bioinformatics task, and thus serves as both a working example and
a template for building new tools. Key features include command line argument
parsing, error handling, progress logging, defined exit status values, a test suite, a
version number, standardised building and packaging, user documentation, code
documentation, a standard open-source software license, software revision control,
and containerisation.

Conclusions

Bionitio serves as a learning aid for beginner-to-intermediate bioinformatics
programmers and provides an excellent starting point for new projects. This helps
developers adopt good programming practices from the beginning of a project and
encourages high-quality tools to be developed more rapidly. This also benefits users of
the tools because they are more easily installed and consistent in their usage. Bionitio
is released as open source software under the MIT License, and is available at
https://github.com/bionitio-team/bionitio.

Corresponding Author: Bernie Pope, Ph.D.
The University of Melbourne, Australia
AUSTRALIA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: The University of Melbourne, Australia

Corresponding Author's Secondary
Institution:

First Author: Peter Georgeson

First Author Secondary Information:

Order of Authors: Peter Georgeson

Anna Syme

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Clare Sloggett

Jessica Chung

Harriet Dashnow

Michael Milton

Andrew Lonsdale

David Powell

Torsten Seemann

Bernard Pope, Ph.D.

Order of Authors Secondary Information:

Response to Reviewers: 16 July 2019

To the Editor-in-Chief and Executive Editor, GigaScience,

We thank the Editor and Reviewers for their insightful and constructive comments on
our submission "Bionitio: demonstrating and facilitating best practices for bioinformatics
command-line software" (GIGA-D-19-00145). In the following document we respond to
each of the reviewer comments and say what has changed in the software and text to
address each point. In the revised manuscript we have used red font to indicate
changes that we have made to the body of the text. We believe that the suggested
changes have significantly improved the quality of the paper and the corresponding
Bionitio tool.

The responses here are presented in the order that the comments appear in the
manuscript review.

Editor Comments

The reviewers agree that the tool itself is a useful contribution, overall. However, they
also have some constructive suggestions for improving the manuscript.

In particular, I agree with reviewer 1 that, ideally, the manuscript should also present
"an evidence-backed testimony about the tool's efficacy in correcting the problems
stated in the introduction."
I understand that a typical, quantitative benchmarking exercise may not be possible for
this type of tool, but reviewer 1 has some good pointers regarding issues that should
be discussed in more detail (for example, regarding FAIR principles and how your
approach suggested in the paper can help in this regard).

Reviewer 2 has some notes on installation and running the tool that may give you
some hints for minor improvements or corrections.

The reviewers also suggest to provide the tool via a container (e.g. docker), especially
as it is meant to be helpful for beginners.

In addition, please register any new software application in the SciCrunch.org
database to receive a RRID (Research Resource Identification Initiative ID) number,
and include this in your manuscript. This will facilitate tracking, reproducibility and re-
use of your tool.

Response

We concur with the Editor that a qualitative benchmarking exercise is challenging for
this type of tool, and that a detailed discussion of our alignment with FAIR principles is
a valuable contribution to the paper. In light of these remarks we have included a
section on how Bionitio enables bioinformaticians to easily adopt many of the key FAIR
principles and have additionally linked this to recent work on related recommendations
for Open Source research software. Disclaimer: a Bionitio author (B Pope) a co-author
on the latter recommendations.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

We have attempted to address issues related to installation and running the tool
outlined by Reviewer 2 and have provided Docker containers for each of the Bionitio
implementations, as well as the bootstrap script, and updated the documentation
accordingly.

We have applied for registration of Bionitio through SciCrunch.org and received an
RRID of SCR_017259. We have included this in the manuscript.

Reviewer 1

Comment 1 (and comment 12)

The limitation of this manuscript, in my mind, is mostly that it reads like more of an
instruction manual and list of general best practices than a detailed technical write up
about the contribution made, and an evidence-backed testimony about its efficacy in
correcting the problems stated in the introduction.

Response

We believe that one of the contributions of Bionitio is that it provides a consolidation of
many disparate sources of best practices for software development in bioinformatics.
Indeed, the features present in Bionitio are distilled from more than 25 different partially
overlapping recommendations. We also believe that it is a contribution of our
manuscript to explicitly link those recommendations to the features present in our tool.
Therefore, there is necessity to list our sources and argue for their significance.
Another key contribution of our paper is to show how easily a new project can be
created with our tool, as a step-by-step guide to its main features.

However, we also agree that our manuscript could have made our contributions clearer
and argued further for its efficacy in correcting the problems stated in the introduction.

We also agree with the Editor that "a typical, quantitative benchmarking exercise may
not be possible for this type of tool".

In light of these comments we have made considerable changes to the manuscript.

The following text was added to the conclusion to show how Bionitio helps users to
adopt FAIR principles and related recommendations for open source software:

Alignment with FAIR Principles and OSS Recommendations

In an effort to facilitate continued benefit from the digital assets related to data-
intensive science, representatives from academia, industry, funding agencies, and
publishers have proposed the FAIR Data Principles that aim to make experimental
artefacts findable, accessible, interoperable and reusable for machines and people
[48]. Jiménez et al have argued that poor development practices result in lower quality
outputs that negatively impact reproducibility and reusability of research [49], and
propose four principles for open source software development (OSS
recommendations) that align well with the FAIR principles: 1) make source code
publicly accessible from day one; 2) make software easy to discover by providing
software metadata via a popular community registry; 3) adopt a licence and comply
with the licence of third-party dependencies; and 4) define clear and transparent
contribution, governance and communication processes. Tools developed with Bionitio
have a head start on satisfying both the FAIR principles and the first three OSS
recommendations:
●they are publicly accessible in GitHub repositories with clearly indicated standard
open source licences and user documentation;
●they are interoperable with other tools via standardised inputs and outputs and
interfaces that follow long-established conventions;
●they are re-usable by virtue of the adoption of standard build procedures, the
provision of clear documentation relating to installation and usage, containerisation
with Docker, and integration into CWL;
●where appropriate, specific versions (with defined version numbers) can be made

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

findable by the allocation of Digital Object Identifiers facilitated by Zenodo [50] through
GitHub.
Importantly, Bionitio facilitates compliance with these principles, which is seen by
Jiménez et al as the final (and, in our opinion, most difficult) step in organisational
adoption.

The following text was added to the conclusion to outline Bionitio's role in education
and training by relating it to the Mastery Rubric for Bioinformatics proposed by
Tractenberg et al, along with our own experience in using it to deliver a national
bioinformatics workshop (in Australia):

Role in education and training

In very recent work Tractenberg et al have developed a Mastery Rubric for
Bioinformatics with the goal of better defining skills development and competencies in
the discipline [46]. In this framework, competency in computational methods ranges
through five levels, from novice (stage 1) to independent bioinformatics practitioner
(stage 5). One of the goals of Bionitio is to support education and training for
advancing bioinformaticians from stage 3 - learning best practices in programming and
writing basic code - to stage 5 - developing new software that is useful, efficient,
standardized, well-documented and reproducible. As an example of this application,
Bionitio was used as the basis for a whole-day workshop on best practices in
bioinformatics software development at the Australian Bioinformatics and
Computational Biology Society (ABACBS) Annual Conference in November 2018 [47],
delivered to an audience of 50 bioinformaticians from research and clinical institutes
around Australia. In the first half of the workshop participants learnt how to set up a
new software repository using Bionitio, allowing time for exploration of the codebase,
discussion of key aspects of quality software, and an explanation of the processes that
are automated by Bionitio. In the second half of the workshop participants learnt about
test-driven development (TDD) and undertook an exercise to extend the codebase with
new features, documentation, corresponding test cases, and linkage to revision control
and continuous integration testing. In this setting, Bionitio's design as a simple-yet-
realistic bioinformatics exemplar provides both a common codebase for coordination of
workshop materials and an extensible platform for the delivery of hands-on practical
activities. Additionally, by providing complete working examples in many different
languages, Bionitio acts as a kind of "Rosetta Stone" and is therefore likely an
excellent vehicle for comparative programming skills transfer.

We have also expanded the third paragraph in the Conclusions to emphasise why we
think Bionitio is a significant contribution on top of the already existing
recommendations in the literature (and the main motivation for its creation):

The challenges faced by the bioinformatics and science communities in building better
quality software are well known, and there is no shortage of practical recommendations
to be found in the literature. These guidelines are undoubtedly useful to beginners,
however we believe they fall short in two ways. First, they are spread over multiple
manuscripts that only partially overlap in their recommendations, therefore some level
of consolidation is needed. Second, they are static artefacts that point to good
practices but do not remove the considerable burden of applying them in real code.
These two observations motivated the creation of Bionitio, both as a way of collecting
commonly recommended best practices, and as a way of demonstrating and facilitating
their use. Therefore, a significant contribution of our work is to build a tool that can both
illustrate best practices by example but also make it easy to use them in new projects.
In this sense Bionitio takes a much more active role in the dissemination and
compliance with these principles.

We have also emphasised the contribution that this tool makes to improving software
development in bioinformatics as per comments 13,14,15 and 21 below.

Comment 2

(section 1; paragraph 2) How is "correctness" evaluated in your mind? In research truth
is often unknown by definition, so perhaps choose a less loaded word or elaborate on
how this is evaluated.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Response

We agree with the reviewer that truth can be elusive in science, and therefore by
correctness we mean that the software implements its intended functionality; so it is
correct in the sense that it meets its specification (whether that specification be formally
defined, or, more likely, part of the informal intentions that are known to the author(s)).
Following the advice of the reviewer we have used a less loaded way to describe this,
and changed the manuscript as follows:

Given the results-driven nature of research, the functional aspects of scientific
programs (e.g. correctness whether expected inputs produce expected outputs) are
heavily emphasised at the expense of the non-functional ones (e.g. usability,
maintainability, interoperability, efficiency).

Comment 3

Duplicate heading at start of paper? Both "Findings" and "Background"

Response

We believe that this formatting follows the suggested GigaScience Technical Note style
(https://academic.oup.com/gigascience/pages/technical_note), where in the main text,
"Findings" is a larger heading including the subheadings Background, Implementation,
Methods, Conclusions, etc. If our interpretation of the formatting guidelines is incorrect,
we are confident that this can be fixed in the final proof.

Comment 4

(section 1; paragraph 2, last sentence) Some "specifications" or recommendations,
such as Nature Publishing's software checklist, and some 10-simple-rules articles in
pnas related to scientific software. Are these the types of things you're referring to? If
so, might be worth mentioning how they can exist but perhaps are harder to define for
a specific (quickly moving) domain beyond the "basics".

Response

In this part we are referring to "software requirements specifications" that are
commonly used in Software Engineering to define the functional and non-functional
requirements of software being developed. We have changed the text to "software
requirements specifications (SRSs)" to clarify this point.

Comment 5

(section 1; paragraph 4) abovementioned -> above-mentioned

Response

Corrected.

Comment 6

(section 1; second-last paragraph) "more likely to adopt good practices" <- have you
witnessed this in the wild with bionitio, yet? I agree that in principle I'd expect this
result, but giving students or researchers the tool and saying nothing else, then coming
back at the end of the process, is this the outcome we get? The biggest places I see
this not continuing beyond the boilerplate is documentation and testing. This could
potentially also be answered if Cookiecutter has successes that you could reference.

Response

We agree with the reviewer that this is an expected result, however we have not
formally tested it, and, for now it sits here as a hypothesis. We have reworded the
sentence to make this point clearer:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

The key point is that they are building on solid foundations, and because a lot of the
mundane-but-important boilerplate is provided by Bionitio, there are fewer barriers to
adopting good practices from the start.

Comment 7

(command line argument parsing) have you considered integrating these command-
line descriptions with standard tools for shipping workflows to C(G)PUs, like Common
Workflow Language (commonwl.org), Boutiques (boutiques.github.io), or others? It
would be an additional feature you could add on top of each language-specific
implementation that would make not only consuming the tools even more uniform, but
enable scaling them out for large datasets more accessible for developers.

Response

We agree with the reviewer that this would be a useful additional feature, and therefore
have added example CWL tool wrappers for each implementation of Bionitio. This
addition was greatly facilitated by the fact that each Bionitio implementation has the
same command line interface, and (now) comes with a Docker container. We have
updated the online documentation for Bionitio to include information about this, and
have made the following changes to the manuscript:

In the Background section:

Operating system virtualisation services, such as Docker [22], and workflow
specification languages, such as the Common Workflow Language (CWL) [23], have
improved portability and reproducibility of tools and pipelines [12,24–26].
...

Specifically, every new Bionitio-created project includes … containerisation with
Docker, and a CWL wrapper.

In the Design and Implementation section:

CWL tool wrapper

Bioinformatics pipelines — where multiple tools are chained together to perform an
overall analysis — create further challenges for reproducible science. This has
motivated the creation of pipeline frameworks that allow the logic of such computations
to be abstracted from the details of how they are executed. An emerging standard in
this area is the Common Workflow Language (CWL) that is supported by several
popular workflow engines. CWL comprises two declarative sub-languages: workflow
descriptions, that define data flow patterns between pipeline stages; and command line
tool descriptions, that define the interfaces of tools in a platform independent manner.
Each Bionitio implementation provides a CWL tool description "bionitio.cwl", that
facilitates its incorporation into CWL pipelines, and takes advantage of CWL's support
for invoking programs within Docker containers.

We have also updated the README.md files for each implementation of Bionitio to
include information about how to use the CWL tool wrapper and included running the
CWL tool wrapper within Travis CI testing.

Comment 8

(software packaging) there is also no mention of virtualization/containerization here,
such as Docker or Singularity, that would also increase the portability of these
packages. Have the authors considered this to further minimize this issue?

Response

We agree with the reviewer that this would be a useful additional feature, and therefore
have added example Docker container definitions for each implementation of Bionitio,

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

and also the bootstrap script.
We have made the following changes to the manuscript:

In the Abstract:

Key features include … , and containerisation.

In the Background section:

Specifically, every new Bionitio-created project includes … containerisation with
Docker, and a CWL wrapper.

In the Design and Implementation section:

Sub-heading changed from "Standardised software packaging using programming
language specific mechanisms" to "Standardised software packaging and
containerisation".

Text added:

Standard packaging also helps with containerisation, which is becoming increasingly
useful in bioinformatics [40]. Docker containers are a popular implementation of this
concept, where the underlying operating system is virtualised and packaged alongside
tools and their dependencies. This makes it easy to install "containerised" software on
any platform that supports Docker, and facilitates reproducibility by enabling the exact
same software build to be used on every system. Each Bionitio implementation comes
with a "Dockerfile" that encodes all the necessary information needed to create a
containerised version of the tool. As an added benefit, the Docker container is used in
Travis Continuous Integration testing, which both simplifies the use of Travis and also
enables the functionality of the container itself to be included in the tests.

In the Methods section we added the following text:

Alternatively, the bootstrap script can be run from a Docker container published on
DockerHub (https://cloud.docker.com/u/bionitio/repository/docker/bionitio/bionitio-boot):

$ docker run -it -v "$(pwd):/out" --rm bionitio/bionitio-boot \
-i python -n newproj -c BSD-3-Clause

Comment 9

(methods; choosing a language) do you have any way to recommend language
selection for users? If they're truly new to all of these, maybe coming from a MATLAB
background like many who learned to program through coursework, what guidance
does Bionitio provide here? Is Python a general default, or just for this example? If it is,
where is that justified? The caveat with providing 12 options is that a bit of hand
holding may be required to guide the choice for much of your target audience.

Response

We agree with the reviewer that choice of programming language can be difficult for
absolute beginners. It is difficult to get empirical evidence to support any language
default (and for this reason Bionitio does not have a default language). However, the
selection of implementation languages chosen was guided by the results reported in
[13]. From an analysis of 1,720 bioinformatics repositories on GitHub they observed:
"The main dataset contained a greater proportion of code written in interpreted or
hybrid interpreted/compiled (such as Python) and dynamically typed languages" and
"Our data support the intuition that Java, Python and R are more succinct than lower-
level languages such as C and C++"
Taking these observations together, Python appears to be reasonable starting
language for beginners. To assist beginners with their choice of language we have
updated the README (https://github.com/bionitio-team/bionitio) documentation for
Bionitio to include:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

If you are new to programming, and do not know which programming language to use,
then we recommend picking one of the high-level interpreted languages that are
popular in Bioinformatics, such as Python or R. You may also need to seek advice from
your peers about which language(s) are most appropriate for your purposes. We have
tried to cover as many popular languages as possible, and apologise if your preference
is not currently available. However, we also welcome new implementations of Bionitio
in languages not already covered.

We have also added the following text to the manuscript:

For users relatively new to programming, with no prior constraints on their choice of
language, we recommend they choose a high-level interpreted language such as
Python or R.

Comment 10

can you justify the claims about it being an "excellent vehicle for education"? Any sort
of case study or example from similar tools being effective, etc…

Response

We believe that Bionitio is fairly unique in its approach to templating best practices in
Bioinformatics software development, and therefore it is unlikely that such an approach
has been formally studied in the context of education practices, and unfortunately we
are not aware of such resources (even beyond bioinformatics). However, as mentioned
in our cover letter, we have used Bionitio as the basis for a popular (whole day)
workshop hosted at the Australian Bioinformatics and Computational Biology Society
(ABACBS) annual conference in 2018 (https://www.abacbs.org/conference2018) with
~50 paying attendees from around the country. We conducted a survey of the
attendees to assess the quality and utility of the workshop. In response to the question
"This was a useful workshop that enhanced my knowledge and skills" out of 18
respondents 94.44% agreed or strongly agreed. Given the success of the initial
workshop, we ran another in May 2019, with 14 attendees. From formal feedback
received from the second workshop, in response to the question "My overall
impression is that this is a useful workshop that enhanced my knowledge and skills" we
received a score of 4.8/5 from 11 respondents. We appreciate that this is anecdotal
evidence and is not supported by a rigorous experiment and therefore we have not
discussed the workshop feedback in the manuscript. However, we have reduced the
strength of our claim in the manuscript by adding a qualifier:

Additionally, by providing complete working examples in many different languages,
Bionitio acts as a kind of "Rosetta Stone" and is therefore likely an excellent vehicle for
comparative programming skills transfer.

We have also addressed Bionitio's role in training and education more thoroughly in
the Conclusion as mentioned in our response to Comment 1 above.

Comment 11

figure 1 text is barely readable, and boxes are odd relative sizes with a fair amount of
wasted foreground (coloured) space. Colour doesn't seem to convey much information.
I didn't find this figure particularly useful or instructive. I.e. I don't know any better how I
would use bionitio, or what exactly it'll create (just that it draws from a boiler plate).
Maybe repurpose this figure to be more of a "schematic" of what is contained within a
bionitio-created-project (is there a more concise name for these?), and then a more
streamlined version of what is currently here.

Response

We included this figure in the manuscript because it serves to visually represent how a
new project is started by the bootstrap script. We have found that this has been a
particular issue of confusion for new users, especially those who are unfamiliar with Git

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

and GitHub. The colours represent the location of code, either in GitHub (yellow) or the
local machine (purple). To streamline this figure, we have removed the grey
background, replaced the external arrows with dashed lines. We will submit a high-
resolution version in our resubmission, and include a resolution-independent SVG
version as well.

Comment 12

I felt that while the manuscript introduces a tool which is certainly of use to a
community of scientific software developers, the focus of the paper is more based on
the justification of which components are included in this tool, rather than the technical
nature or efficacy of the contribution. With guides that exist and "best practices" that
were even mentioned in the 10-simple-rules article, I believe the article would benefit
from significant rewriting to be focused on the contributions of these authors and their
tool, rather than an extended summary of what are commonly accepted as best
practices for software development. While I acknowledge the novel and valuable
contribution presented in this paper, I feel the manuscript does not highlight this
contribution adequately.

Response

Thank you for recognising the utility of Bionitio. We believe this point is similar in to
Comment 1 which we have addressed in detail above.

Comment 13

One concern I have with making it easier for people to continue making their own tools
is exactly to the point mentioned at one point in the manuscript, of "never repeat
yourself." In my area of research, computational neuroscience, essentially every
pipeline has been built handfuls of times, and the answers aren't particularly replicable
across implementations. This of course raises a whole other set of issues in terms of
the quality of software being produced, because even if we encourage developers to
adopt existing tools where possible, if they don't adopt the same ones for the same
tasks, how can we meaningfully compare their implementations? This ties in to the
FAIR principles, which I was surprised not to see mention of in this work, as they are
closely aligned with the aim of bionitio to my understanding. The missing piece in
bionitio, of course, would then be that of publishing tools and ensuring the findability of
software that people will make. This of course doesn't solve the issue, but at least
enables the easier evaluation of various implementations towards the same end. As
mentioned above, the Boutiques initiative (disclaimer: I am a co-lead on this project)
makes efforts to make sure tools, once they exist, are able to be shared/consumed
FAIR-ly, so could potentially be referenced in a discussion on this point. The paper of
this tool is on Gigascience (https://doi.org/10.1093/gigascience/giy016) and a recent
poster focusing on FAIR software workflows can be found here:
https://doi.org/10.6084/m9.figshare.8143241.v2 . I would appreciate if the authors
discussed this point, the obvious risk that their tool introduces into the field by virtue of
increasing the accessibility of tool development, and how they propose their
contribution is either worth this added risk or how they intend on enabling the
evaluation of it.

Response

We agree with the reviewer that there can be a tendency in bioinformatics and
scientific computing to reinvent the wheel, which can create challenges for replication
and comparison. However, a key point is that the purpose of Bionitio is not to merely
make it easier for people to continue making their own tools or make software
development more accessible (though many other systems, such as IDEs, do this
already), but rather to help people to make better tools. We anticipate that many uses
of Bionitio will be for bespoke tools that are tailored to the specific needs of a research
project - tools that do not already exist. In our experience there is considerable
demand in Bioinformatics for the creation of this type of software. Even if these tools do
not have a wide audience at the beginning, we still believe that there is considerable
value to be gained from the use of good programming practices from the outset of the
project, as discussed in the paper. We also agree with the reviewer that the FAIR

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

principles are highly relevant and have made considerable changes to the manuscript
to address this issue, as per our response to Comment 1. We thank the reviewer for
bringing the Boutiques system to our attention. Command-line Interface and packaging
standardisation efforts provided by Boutiques and similar systems such as CWL
provide great utility in building usable and reproducible analyses. We commend and
support these initiatives. We have added CWL tool wrapper support to Bionitio as
discussed in our response to Comment 7 above.

Reviewer 2

Comment 14

I wonder if the command line is the best starting point for inexperienced programmers?
And if not starting with an IDE that provides similar templates would be better? The
paper could therefore discuss how bionitio can be used from an IDE. I also wonder if
the team plan to provide bionitio templates for some popular IDEs?

Response

We agree that providing support for IDE use may be of use to inexperienced
programmers, however that would be challenging to do in a way that is portable
across: all the (12) language implementations of Bionitio, the many popular IDEs that
are currently in use, and the major operating systems. Considering these challenges,
we decided to make Bionitio agnostic with respect to the programming environment
employed by users. Users can use an IDE with Bionitio if they desire, but we do not
plan to offer particular support for any of the many options available.

Comment 15

are there some numbers that can document how much bionitio is used, and who the
users are? Perhaps something from GitHub?

Response

We do not currently have information about how much Bionitio is used and who the
users are. We use it ourselves on a regular basis, as do many of our colleagues. Many
attendees of our workshops continue to use it for their own work. Our experience
shows that it offers considerable utility for a wide audience.

Comment 16

I tested bionitio-python in Ubuntu on Windows. It has Python2 as default, so by
following the instructions I could install the code (with Python2), but not run it.
However, by installing the code with pip3 I could use it as described in the
documentation. But this solution may not be obvious for beginner programmers, so the
documentation should take this into account.

Response

Only Python 3 is currently supported by Bionitio. Python 3 is at least 10 years old, and
Python 2 is now officially considered a legacy system. New Python projects are
encouraged to be written in Python 3. As the reviewer notes, it is unfortunate that some
operating systems still offer Python 2 as a default. As suggested, we have updated the
user documentation to make it clearer that Python 3 is required. Specifically, we have
replaced Python with "Python 3" on the main README.md for Bionitio
(https://github.com/bionitio-team/bionitio), and also added the text "Python 3 is required
for this software." on the README.md for the Python implementation of Bionitio
(https://github.com/bionitio-team/bionitio-python).

Comment 17

I also found that the example program treated invalid fasta files (for example setup.py)
as empty fasta files. I believe according to the documentation this should have resulted

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

in an "invalid file" exit value instead of success (zero).

Response

We thank the reviewer for identifying this mistake. Most FASTA parsing libraries are
very liberal in what they accept as valid input, and therefore do not raise errors on files
that are not FASTA format. We had originally intended to return an exit status of 3 for
input files not in FASTA format, but this is challenging to do when most standard
libraries for parsing FASTA do not raise errors. Given this limitation, we have decided
to remove the exit status of 3 and have adjusted the documentation in the README
file for each Bionitio implementation accordingly.

Comment 18

In the documentation, C# was not mentioned as one of the available languages.
The integration with GitHub, however, did not work. When we ran the script, a different
command-line window was opened, asking for a GitHub password. When typing in the
password, it was shown in clear text. Nothing happened when hitting the Enter-key.
The GitHub-repository was not created.

Response

We thank the reviewer for pointing out the omission of C# in the list of available
languages. We have corrected this mistake in the README.md file for Bionitio
(https://github.com/bionitio-team/bionitio/blob/master/README.md) and in the user
documentation (https://github.com/bionitio-team/bionitio/wiki/2.-Set-up-a-project-with-
bionitio).

We have not been able to reproduce the error with GitHub integration on Windows.
However, we have created an issue on our GitHub repository for Bionitio to look into
this further, to see if it can be reproduced (https://github.com/bionitio-
team/bionitio/issues/73).

Comment 19

The C++ version requires a bit more manual configuration, since the `CMake`/`Make`
install does not copy the built executable to a standard location (such as usr/local/bin).
It also depends on the `seqan` library that has to be downloaded separately.

Response

We agree with the reviewer that the C++ version requires more manual configuration
than some of the other implementations of Bionitio. This is due to the limited nature of
C++ software packaging systems. We require the user to download the Seqan source
code from http://packages.seqan.de/seqan-library/seqan-library-2.1.1.tar.xz because
we do not want to include that source code in the Bionitio repository. We have added
an 'install' target for the build command now, so that the user can run 'make install' and
have the executable copied into their desired location and have updated the
documentation accordingly (https://github.com/bionitio-team/bionitio-
cpp/blob/master/README.md). The default behaviour is to place the executable in the
same directory where the 'make' command was executed. It is also likely that the
added support for Docker will also help some users with this issue.

Reviewer 3

Comment 20

for Windows computer use case scenario, it only say to get Putty to login to Linux. I
would suggest the authors create a Virtualbox or Docker container (both virtualizations
solutions are as easy to install on Windows as you would install Skype), with some
base ubuntu and some working examples included of project structure generation with
their tool.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Response

Currently Bionitio is not directly supported on Windows. Our user guide suggested that
Windows users might need to log into a Unix-like system to try it out. We have added
the reviewer’s suggestion that they may also like to consider the use of a virtualisation
system such as VirtualBox (https://github.com/bionitio-team/bionitio/wiki/1.-Set-up-
your-computer). We agree with the reviewer that the addition of Docker container
support will be a benefit to Windows users.

Comment 21

It would be great to have a little discussion how it can help beginner developers, for
example can it be used in an educational setting when setting up projects for a
bioinformatics class. It could be also discussed how advanced developers can use that
to get project structure initiated fast (I am thinking Ruby on Rails or Django project
initiation). What are the additional benefits for advanced developers ?

Response

Yes, Bionitio is well suited to being used in an educational setting. We have developed
and delivered workshops on best practices in bioinformatics software development
based on Bionitio. We have added a new section to the manuscript on its role in
education and training (see our previous response to Comment 1 above). We agree
that Bionitio can also help advanced users get project structure initiated quickly.
Indeed, we count ourselves as advanced users, and we regularly use Bionitio for this
purpose. We believe that the use-case suggested by the reviewer (Ruby on Rails or
Django project) is better solved by the Cookiecutter project, mentioned as related work
in the Background section where we note "Cookiecutter provides a more general-
purpose templating system that is best suited to starting new software systems in
specific programming languages, such as the instantiation of web applications based
on particular web framework libraries."

Additional changes to the manuscript

The following small improvements were made to the manuscript.

1) Affiliation updated for one author:

Melbourne Genomics Health Alliance, Walter and Eliza Hall Institute, Parkville, Victoria,
Australia.

2) A sentence in the Abstract was reworded to improve expression:

Old sentence:

On the other hand, the barrier to entry in bioinformatics software development is high
for beginners, especially if they want to adopt good programming practices.

Replacement:

In particular, for beginners, the barrier to entry in bioinformatics software development
is high, especially if they want to adopt good programming practices.

3) Text added to describe the optional --minlen command line argument in the Design
and Implementation section:

An optional command line argument --minlen can be supplied, causing the program to
ignore sequences with length strictly less than the given value.

4) Paragraph slightly reworded in the Design and Implementation section to improve
expression:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Old paragraph:

In the remainder of this section we outline the main features incorporated into Bionitio's
prototypical tool that facilitate good programming practices and why they are important.
In the following section we demonstrate by example how Bionitio can be used to create
a new software project.

New paragraph with changes noted in red:

In the remainder of this section we outline the main features incorporated into Bionitio's
prototypical tool that facilitate good programming practices, and, where possible, relate
them to the relevant recommendations in the literature. In the section afterwards we
demonstrate by example how Bionitio can be used to create a new software project.

5) Replaced "in name of" with "for the sake of" in the Conclusion to improve
expression.

6) We capitalised "Cookiecutter" in the Background section.

7) We shifted the sentence "(the $ sign indicates the command line prompt):" earlier in
the text, to cover the first use of the $ notation.

8) We improved the wording of the first sentence in the sub-section "Standardised
software packaging and containerisation" (and added an additional reference): "The
installation process can be one of the most cumbersome and frustrating parts of using
bioinformatics software, because many tools do not provide much assistance to the
user [14], and complex dependency chains can clash with local settings [10]."

9) Fixed the pluralisation in the Revision control sub-section: "implementations"

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

1

Bionitio: demonstrating and facilitating

best practices for bioinformatics

command-line software

Peter Georgeson: Melbourne Bioinformatics, The University of Melbourne, Melbourne,

Victoria, Australia. Department of Clinical Pathology, The University of Melbourne, Australia,

peter.georgeson@unimelb.edu.au

Anna Syme: Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria,

Australia. Royal Botanic Gardens Melbourne, Victoria, Australia. anna.syme@rbg.vic.gov.au

Clare Sloggett: Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria,

Australia. sloc@unimelb.edu.au

Jessica Chung: Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria,

Australia. jchung@unimelb.edu.au

Harriet Dashnow: Bioinformatics, Murdoch Children’s Research Institute, Royal Children’s

Hospital, Parkville, Victoria, Australia and School of BioSciences, The University of

Melbourne, Melbourne, Victoria, Australia. harriet.dashnow@mcri.edu.au

Revised main manuscript Click here to
access/download;Manuscript;bionitio_manuscript_revised.docx

Click here to view linked References

https://www.editorialmanager.com/giga/download.aspx?id=79147&guid=27f92c09-b038-4333-9e0f-553c6ecd7e1c&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=79147&guid=27f92c09-b038-4333-9e0f-553c6ecd7e1c&scheme=1
https://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=2851&rev=1&fileID=79147&msid=eff25fd5-7108-42ad-b70e-0fa0d211eee1

2

Michael Milton: Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria,

Australia, Melbourne Genomics Health Alliance, Walter and Eliza Hall Institute, Parkville,

Victoria, Australia. michael.milton@unimelb.edu.au

Andrew Lonsdale: ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The

University of Melbourne, Parkville, Victoria, Australia and Bioinformatics, Murdoch Children’s

Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia.

andrew.lonsdale@lonsbio.com.au

David Powell: Monash Bioinformatics Platform, Biomedicine Discovery Institute, Faculty of

Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.

david.powell@monash.edu

Torsten Seemann: Melbourne Bioinformatics, The University of Melbourne, Melbourne,

Victoria, Australia; Department of Microbiology and Immunology, Doherty Institute for

Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.

t.seemann@unimelb.edu.au

Bernard Pope: Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria,

Australia. Department of Clinical Pathology, The University of Melbourne, Australia.

Department of Medicine, Central Clinical School, Monash University, Australia.

bjpope@unimelb.edu.au. (* Corresponding author)

3

Abstract

Background

Bioinformatics software tools are often created ad hoc, frequently by people without

extensive training in software development. In particular, for beginners, the barrier to entry in

bioinformatics software development is high, especially if they want to adopt good

programming practices. Even experienced developers do not always follow best practices in

all the code they develop. A consequence of this is the proliferation of poorer-quality

bioinformatics software, leading to limited scalability and inefficient use of resources; lack of

reproducibility, usability, adaptability and interoperability; and erroneous or inaccurate

results.

Findings

In response to this problem we have developed Bionitio, a tool that automates the process of

starting new bioinformatics software projects following recommended best-practices. With a

single command, the user can create a new well-structured project in one of twelve

programming languages. The resulting software is functional, carrying out a prototypical

bioinformatics task, and thus serves as both a working example and a template for building

new tools. Key features include command line argument parsing, error handling, progress

logging, defined exit status values, a test suite, a version number, standardised building and

packaging, user documentation, code documentation, a standard open-source software

license, software revision control, and containerisation.

Conclusions

Bionitio serves as a learning aid for beginner-to-intermediate bioinformatics programmers

and provides an excellent starting point for new projects. This helps developers adopt good

4

programming practices from the beginning of a project and encourages high-quality tools to

be developed more rapidly. This also benefits users of the tools because they are more

easily installed and consistent in their usage. Bionitio is released as open source software

under the MIT License, and is available at https://github.com/bionitio-team/bionitio.

Keywords

bioinformatics, software development, best practices, training

Findings

Background

Software development is a central part of Bioinformatics, spanning a wide gamut of activities

including data transformation, scripting, workflows, statistical analysis, data visualisation,

and the implementation of core analytical algorithms. However, despite the critical and far-

reaching nature of this work, there is a high degree of variability in the quality of

bioinformatics software tools being developed, reflecting a broader trend across all scientific

disciplines [1–3].

A common approach to defining software quality is to consider how well it meets its

requirements. These can be functional - identifying what the software should do, and non-

functional - identifying how it should work. Given the results-driven nature of research, the

functional aspects of scientific programs (e.g. whether expected inputs produce expected

outputs) are heavily emphasised at the expense of the non-functional ones (e.g. usability,

maintainability, interoperability, efficiency) [4]. Additionally, the highly complex and evolving

nature of scientific software can make software requirements specifications (SRSs)

infeasible, and therefore they are rarely defined in practice [4,5].

https://github.com/bionitio-team/bionitio

5

The underlying causes of poor bioinformatics software quality are multifaceted, however two

important factors have been highlighted in the literature: 1) the lack of software engineering

training amongst bioinformaticians [2,3,6–11]; and 2) the fact that research groups have

limited time and money to spend on software quality assurance [10,12–15] . As a result

many bad practices are recurrently observed in the field. Lack of code documentation and

user support makes tools hard to install, understand and use. Limited or non-existent testing

can result in unreliable and buggy behaviour. A high-degree of coupling with the local

computing environment and software dependencies impedes portability. The consequences

of poor quality software can have a significant impact on scientific outcomes. Substantial

amounts of users' time can be wasted in trying to get programs to work, scientific methods

can be difficult to reproduce, and in the worst-case, scientific results can be invalid due to

program errors or incorrect usage [3,7,8,10,12,13,16,17] .

The above-mentioned problems are well known and have prompted remedial action in a

number of areas. Activities to increase software development training amongst scientists are

under way, the most notable examples being the highly successful Software Carpentry and

Data Carpentry workshops [2,3] . Additionally, there are many useful recommendations in

the literature offering practical advice for beginners [9,12,16,18] including specific advice for

biologists new to programming [19]. Significant efforts have also been made in producing

software package collections where best-practice guidelines and curation provide minimum

standards of software quality, such as Bioconductor for R [20], and Bioconda for

bioinformatics command-line tools [21], to name two prominent examples. Operating system

virtualisation services, such as Docker [22], and workflow specification languages, such as

the Common Workflow Language (CWL) [23], have improved portability and reproducibility

of tools and pipelines [12,24–26]. Increasing the resources available for scientific software

development remains a complex challenge. The Software Sustainability Institute in the UK

demonstrates one successful model where pooled research funding enables the provision of

6

consultancy, training and advocacy for scientific software development on a national level

[27].

In this work we adopt a pragmatic approach to improving bioinformatics software quality that

is summarised by Rule 7 in Carey and Papin's Ten simple rules for biologists learning to

program: "develop good habits early on" [19]. The idea is that new bioinformatics tools

should be started by copying and modifying a well-written existing example. This allows

bioinformaticians to get started quickly on solving the crux of their problem, but also ensures

that all the ingredients of good programming style and functionality are present from the

beginning. Based on this concept we have developed a tool called Bionitio that automates

the process of starting new bioinformatics software projects with recommended software

best-practices built-in. With a single command the user can create a new well-structured

project in one of (currently) twelve programming languages. The resulting software is

functional, carrying out a prototypical bioinformatics task, and thus serves as both a working

example and a template for building new tools. It is expected that users will incrementally

modify this program to ultimately satisfy the requirements of their task at hand. The key point

is that they are building on solid foundations, and because a lot of the mundane-but-

important boilerplate is provided by Bionitio, there are fewer barriers to adopting good

practices from the start. Specifically, every new Bionitio-created project includes command

line argument parsing, error handling, progress logging, defined exit status values, a test

suite, a version number, standardised building and packaging, user documentation, code

documentation, a standard open-source software license, software revision control,

containerisation with Docker, and a CWL wrapper. In this paper we describe the design and

implementation of Bionitio and demonstrate how it can be used to quickly start new

bioinformatics projects.

The closest related work to Bionitio is the Cookiecutter project [28]. It also takes advantage

of the templating approach for starting new software projects, but it is targeted at a different

7

audience. Cookiecutter provides a more general-purpose templating system that is best

suited to starting new software systems in specific programming languages, such as the

instantiation of web applications based on particular web framework libraries. Conversely,

Bionitio provides many instances of the same prototypical bioinformatics tool implemented in

different programming languages. While Bionitio could theoretically be implemented on top

of a system such as Cookiecutter, we believe that the extra complexity is not warranted and

would be a barrier to understanding for our target audience.

Design and Implementation

Bionitio is designed around two components.

The first component is a prototypical bioinformatics tool that has been re-implemented in

(currently) twelve different programming languages. Each implementation of the tool carries

out exactly the same task, and each is stored in its own repository on GitHub underneath the

bionitio-team project. For example, the Python 3 and C++ implementations are found at the

following GitHub URLs respectively:

 https://github.com/bionitio-team/bionitio-python

 https://github.com/bionitio-team/bionitio-cpp

Each of the repositories acts as a self-contained exemplar of how to implement the

prototypical tool in the given programming language, carrying out good programming

practices (e.g. command-line argument parsing) in a language-idiomatic way.

The second component is a "bootstrap" script that automates the process of creating a new

software project based on one of the language-specific repositories. With a single invocation

of the bootstrap script the user can quickly start a new project; all they need to do is specify

8

a new project name and the programming language to use (the $ sign indicates the

command line prompt):

$ bionitio-boot.sh -n newproj -i python

The example above creates a new local repository called "newproj" on the user's computer

by cloning and then renaming the bionitio-python repository. Optionally, the user can also

specify their GitHub username, which will cause the bootstrap script to create and populate a

remote repository on GitHub for the new project. The repository comes with a test-suite,

allowing continuous integration testing to easily be enabled via GitHub's integration with

Travis CI [29]. The overall process carried out by the bootstrap script is illustrated in Figure

1.

Figure 1. Overview of the automated process for creating new projects performed by the

Bionitio bootstrap script.

The prototypical bioinformatics tool is intended to be easy to understand and modify.

Therefore it has only minimal functionality; just enough to demonstrate all the key features of

a real bioinformatics command line program without becoming distracted by unnecessary

complexity. In essence, the tool streams input from one or more FASTA files, computes

several simple statistics about each file, and prints a tabulated summary of results on

standard output. For example, the command below illustrates the behaviour of the tool on a

single input FASTA file called "file1.fa":

$ bionitio file1.fa

FILENAME NUMSEQ TOTAL MIN AVG MAX

file1.fa 5264 3801855 31 722 53540

9

The output is in tab-delimited format, consisting of a header row, followed by one or more

rows of data, one for each input file. Each data row contains the name of the input file,

followed by the total number of sequences in the file (NUMSEQ), the sum of the length of all

the sequences in the file (TOTAL), followed by the minimum (MIN), average (AVG), and

maximum (MAX) sequence lengths encountered in the file. An optional command line

argument --minlen can be supplied, causing the program to ignore sequences with length

strictly less than the given value.

Each implementation is self-contained and ready to be installed and executed.

Consequently, Bionitio is an excellent resource for programmer training. However, the main

intended use-case is that Bionitio will be used as the starting point for new projects and we

expect users to rewrite parts of it to carry out their own desired functionality. Given that much

of the boilerplate is already provided, modifying the program should be significantly easier

than starting from scratch.

The twelve current implementation languages were chosen to represent the most commonly

used languages in bioinformatics [17] (C, C++, Java, Javascript, Perl, Python, R and Ruby)

but also to provide examples in up-and-coming languages and paradigms (C#, Clojure,

Haskell and Rust). The fact that each instance implements the same prototypical tool

provides important consistency amongst the different instances. It means that they all have

common functionality, they can be easily compared, they can share the same test suite, their

user documentation in the form of a README file can be templated, and the inclusion of

new programming language implementations is straightforward. Over time we hope that new

language implementations will be contributed by the community.

All the components of Bionitio are released under the terms of the MIT license, however we

explicitly grant users permission to choose their own license for derivative works. The

bootstrap script optionally allows the user to choose one of several standard open source

10

licences for newly created projects (Apache-2.0, BSD-2-Clause, BSD-3-Clause, GPL-2.0,

GPL-3.0 and MIT). If no license is specified the MIT is chosen as the default. The terms of

the license are copied into the LICENSE file in the top level of the repository, and all

references to the license in source files are updated accordingly.

The bootstrap script also accepts optional author name and email address arguments which,

if supplied, are inserted into the source code and documentation files at appropriate places.

Newly created projects are committed to fresh Git [30] repositories. All instances of the word

"bionitio" are replaced with the new project name, including in file paths and file contents,

and all files are checked into a new git repository with a pristine commit history.

In the remainder of this section we outline the main features incorporated into Bionitio's

prototypical tool that facilitate good programming practices, and, where possible, relate them

to the relevant recommendations in the literature. In the following section we demonstrate by

example how Bionitio can be used to create a new software project.

Table 1 to appear here [See Additional file 1].

Command line argument parsing

We provide a standard command line interface that follows modern Unix conventions

[31,32], including providing arguments for help (--help) and the program version (--version)

[18,33], and provision of single-dash notation for short argument names and double-dash

notation for long argument names. Most importantly, the help argument causes the program

to display usage information, including a description of each argument and its expected

parameters. Where possible we use standard library code for implementing command-line

argument parsing (Table 1), which tends to simplify the process of adding new arguments

and ensures that user help documentation is generated.

11

Input and output conventions and progress logging

Bioinformatics tools are often strung together in pipelines. A common Unix paradigm is that

each tool should "expect the output of every program to become the input to another, as yet

unknown, program" [34]. Consequently, the tool can take input from one or more files or

from the standard input device (stdin), which may be piped from the output of another

program. Similarly, output is written to the standard output device (stdout) in a tab-delimited

format. Additionally, we ensure that error messages are always written to the standard error

device (stderr) [18]).

We provide an optional progress logging facility (--log), providing useful metadata about a

computation that can aid debugging and provenance [11]. Progress logging messages are

written to a specified output file. The log file includes the command line used to execute the

program, and entries indicating which files have been processed so far. Events in the log file

are annotated with their date and time of occurrence. Where possible we use standard

library code for the provision of logging services (Table 1), as these easily facilitate

advanced features such as timestamping of log messages, log file roll-over, support for

concurrency, and different levels of logging output (e.g. messages, warnings, errors,

etcetera).

Library code for parsing common bioinformatics file formats

There are several tasks in bioinformatics that are common across analyses. For example,

many tools will need to parse sequence files in FASTA format. Rather than re-write code for

this, it is better to use existing libraries. "Don’t Repeat Yourself" is a maxim that can be

applied at multiple levels when programming [11,12,35]. Millions of lines of high-quality open

source software are freely available on the web. It is typically better to find an established

12

library or package that solves a problem than to attempt to write one's own routines for well-

established problems [3] and this also improves reusability [10]. We demonstrate this

principle by using existing bioinformatics library code to parse the input files (Table 1). This

also allows Bionitio to demonstrate how non-standard library dependencies can be specified

in the software package description, such as the "setup.py" file for Python that specifies a

dependency on the biopython [36] library.

Defined exit status values

Processes on most operating systems return an integer exit status code upon termination.

The Unix convention is to use zero for success and non-zero for error. Exit status values

provide essential information about the behaviour of executed programs and are relied upon

when programs are called within larger systems, such as bioinformatics pipelines. Such

pipelines can become large and complex and can run for long periods of time, therefore the

likelihood of errors is high. Improper indication of success or failure can have significant

consequences for such systems. For example, erroneous reporting of exit status zero, for a

computation that actually failed, can cause a pipeline to continue processing on incomplete

results, yielding unpredictable behaviour, or worse, silent errors. Non-zero exit status values

can also provide useful debugging information by distinguishing different classes of errors.

Bionitio demonstrates good programming style by defining the exit status values as

constants, and provides well-defined exit points in the program, and documents the meaning

of the status values in the README file.

A test suite including unit tests, integration tests, and continuous integration

Software testing enables us to verify that the various components of the program work as

expected, it allows us to modify the codebase while maintaining established functionality,

13

and provides examples that demonstrate how to use the software along with its expected

behaviour [16].

Bionitio includes examples of both unit tests and integration tests. A unit test runs a single

method in isolation and enables the verification that each method in the implementation

behaves as expected without concern for its extended environment. Where possible we use

unit testing library frameworks appropriate for each programming language because they

offer significant extended functionality over hand-written tests, and can facilitate better output

reporting (Table 1). Integration tests ensure that the program behaves correctly as an entire

entity, with all the components working together. Given that all implementations of Bionitio

are expected to behave in the same way, they all share the same underlying testing data

and automated integration-testing shell script. The README file for the project shows how

the user can run a simple test to ensure that the program is working as expected, which

increases their confidence that it was installed correctly [12].

Continuous integration is a software development practice that requires all changes to a

software project’s code base to be integrated, compiled and tested as changes are made.

Travis is an online provider of continuous integration testing that enables automatic

execution of tests whenever changes are committed to a source repository, and is currently

available free to all GitHub users. This benefits software development by enabling any

introduced problems to be identified faster [37], and avoids the introduction of breaking

changes into the code. Each Bionitio implementation includes all the necessary Travis

configuration files and demonstrates how continuous integration can be used to run both the

unit and integration tests at each commit to the GitHub repository. The Bionitio wiki on

GitHub contains detailed instructions about how to enable Travis for newly created projects.

The README file also includes the URL to show the status badge for Travis testing,

providing a quick way for users to see the status of continuous integration testing (for

example, a green icon badge showing successful "build passing").

14

Version number

Version numbers allow users to track the provenance of their work [11,12,18]. This is

particularly important in Science where reproducibility is a primary concern. Bionitio comes

with a clearly defined version number which is defined as a constant in a single place in the

source code, which can be displayed to the user of the program via the --version command

line argument. We do not prescribe a particular versioning scheme to use (e.g. Semantic

Versioning [38]), rather we prefer to let the user decide on the most appropriate mechanism

for their work. Our main objective is that a version number is defined, that it can be easily

discovered by the user, and that it is easy to update and modify in a single place in the

program source code.

Standardised software packaging and containerisation

The installation process can be one of the most cumbersome and frustrating parts of using

bioinformatics software, because many tools do not provide much assistance to the user

[10], and complex dependency chains can clash with local settings [25]. Difficult to install

software reduces reproducibility, is less likely to be used, and can cause problems with

reliability due to differences between the developer and user computing environments.

These problems can be addressed by using standard build tools and software packaging

systems [12]. Such systems can automate the process of ensuring that correct and complete

versions of software dependencies are installed [18], and by following conventional practice,

they allow tools to integrate with the broader software ecosystem and follow the principle of

least surprise [39]. Bionitio does this by adopting the idiomatic package and installation

mechanisms for each implementation language. For example in Python we use Pip, in C we

15

use GNU autotools and make, and in C++ we use CMake. A full list of the building and

packaging systems used in each implementation is provided in Table 1.

Standard packaging also helps with containerisation, which is becoming increasingly useful

in bioinformatics [40]. Docker containers are a popular implementation of this concept, where

the underlying operating system is virtualised and packaged alongside tools and their

dependencies. This makes it easy to install "containerised" software on any platform that

supports Docker, and facilitates reproducibility by enabling the exact same software build to

be used on every system. Each Bionitio implementation comes with a "Dockerfile" that

encodes all the necessary information needed to create a containerised version of the tool.

As an added benefit, the Docker container is used in Travis Continuous Integration testing,

which both simplifies the use of Travis and also enables the functionality of the container

itself to be included in the tests.

A standard open-source software license

When software is distributed without a license it is generally interpreted to mean that no

permission has been granted from the creators of the software to use, modify, or share it.

This is counterproductive to adoption. A standard open-source license provides minimum

fuss for users and increases the chances that software will be widely used [11], partly

because it removes barriers to widespread access, and partly because it encourages

transparency, reuse and collaboration [16]. It is very common for research centres to install

software on behalf of their users. Unsurprisingly such research centres (and their parent

institutions) tend to be risk averse when it comes to legal matters. A non-standard license is

very likely to require vetting by lawyers, which can be a protracted exercise. Many license

options are available [41]. As mentioned above, new projects started with Bionitio use the

MIT license by default, but the user can choose from a number of standard options. The

terms of the license are copied into the LICENSE file in the top level of the repository, and

16

the name of the license is indicated prominently in the README file, and in source code

files.

Documentation

Software documentation broadly falls into two categories: user documentation that explains

how to install and use the code, and developer documentation that explains how the

program is designed and intended to work. For the intended use case of Bionitio we believe

it is important to strike a balance between the extensiveness of documentation and the effort

required to maintain it. Therefore we adopt pragmatic recommendations from the literature

that offer a good compromise between cost and functionality.

For user documentation we provide two critical components: a README file that appears at

the top level of the repository, and comprehensive command line usage output when via the

--help argument [18,33,37] as discussed above. The README file includes a program

description, dependencies, installation instructions, inputs and outputs, example usage, and

licensing information [12,42]. To ease the burden of adding new implementations of Bionitio,

and to ensure consistency across current implementations, we build each README file from

a template, such that common parts of the documentation are shared, and language-specific

details (such as installation instructions) can be instantiated as needed.

Good developer documentation tries to explain the reasoning behind the code rather than

recapitulating its operations in text [3], and can improve code readability, usability and

debugging [33]. In Bionitio we adopt the following conventions in each implementation. Every

source code file begins with header documentation that contains at least the following

information: the name of the module, a brief description of its purpose, copyright information

(author names and date of creation), license information, and a maintainer email address, a

concise summary of the main components and processes undertaken in the module. Author

17

names, creation dates, license name and maintainer email address can be automatically

populated by the bootstrap script. Every non-trivial component of code (such as type

definitions and procedures) are accompanied by a brief description of the purpose of the

component, plus descriptions of the arguments and results of methods, including any

conditions that are assumed to uphold.

Revision control

Software revision control provides a systematic way to manage software updates, allowing

multiple branches of development to be maintained in parallel, and provides a critical means

of coordinating groups of developers [11,12,37]. Modern revision control systems such as

Git [30] provide flexible and scalable modes of collaboration, supporting individual

programmers all the way up to large —- and potentially geographically distributed —- teams.

The collaborative advantages of Git are complemented by the GitHub code hosting web

application [43], currently the most popular repository for bioinformatics code [17]. GitHub

adds issue tracking, documentation publishing, lightweight release management, integration

with external tools such as continuous integration testing, and perhaps most importantly, an

easy-to-use web interface for source browsing and discovery. Bionitio takes advantage of Git

and GitHub in two ways. Firstly, the Bionitio project itself is hosted on GitHub, including each

of the twelve language-specific implementations of our prototypical bioinformatics tool. The

bootstrap script creates new projects by cloning from GitHub, and therefore GitHub acts as

our web-accessible content management system. Where possible, common features

amongst the implementations, such as testing data, are shared via Git submodules, avoiding

repetition. Secondly, the bootstrap script makes it easy for users to create new GitHub-

hosted projects by optionally automating the initialisation and population of new repositories

via the GitHub API. This saves the user’s time, encourages the use of revision control from

the start of the project, and facilitates sharing the code with collaborators.

18

Recommended programming conventions

Each implementation of Bionitio aims to follow the programming conventions of the

implementation language. This includes the adoption of standard tools and libraries as well

as adhering to programming style guidelines, such as PEP 8 in Python. By following these

practices we enhance integration with the language ecosystem, avoid common pitfalls, and

encourage contributions from external developers [37,44]. Where possible, we have adopted

automated code formatting tools to ensure that we adhere to recommended style, and static

analysis tools to identify likely infelicities and possible sources of error. A full list of the code

formatting and static analysis tools used in each implementation is provided in Table 1.

CWL tool wrapper

Bioinformatics pipelines — where multiple tools are chained together to perform an overall

analysis — create further challenges for reproducible science. This has motivated the

creation of pipeline frameworks that allow the logic of such computations to be abstracted

from the details of how they are executed. An emerging standard in this area is the Common

Workflow Language (CWL) that is supported by several popular workflow engines. CWL

comprises two declarative sub-languages: workflow descriptions, that define data flow

patterns between pipeline stages; and command line tool descriptions, that define the

interfaces of tools in a platform independent manner. Each Bionitio implementation provides

a CWL tool description "bionitio.cwl", that facilitates its incorporation into CWL pipelines, and

takes advantage of CWL's support for invoking programs within Docker containers.

19

Methods

In this section we demonstrate how to create a new bioinformatics software project using the

Bionitio bootstrap script. In order to follow this process the user requires a GitHub account,

and installation of Git on their local computer.

Step 1: choose a programming language, project name, and software license

The Bionitio prototypical bioinformatics tool is currently implemented in twelve programming

languages: C, C++, C#, Clojure, Java, Javascript, Haskell, Perl5, Python, R, Ruby, or Rust.

The user must choose which of these languages they want to use for their new project. For

users relatively new to programming, with no prior constraints on their choice of language,

we recommend they choose a high level interpreted language such as Python or R. The

user must also choose a new name for their project. Optionally, the user may also choose an

open source license for their code. The current available options are Apache-2.0, BSD-2-

Clause, BSD-3-Clause, GPL-2.0, GPL-3.0 and MIT. If no license is specified, the MIT license

is selected by default. In this example we will assume that Python is chosen as the

implementation language, the project name is "newproj", and the BSD-3-Clause license is

desired.

Step 2: run the bootstrap script to create a new software repository

The Bionitio bootstrap script is a BASH shell script that automates the process of creating

new projects. In principle, if Bionitio is already installed on the user's computer, then the

bootstrap script can be run like so:

$ bionitio-boot.sh -i python -n newproj -c BSD-3-Clause

20

A user may find it inconvenient to have Bionitio installed just to run the bootstrap script,

therefore they may instead prefer to use Curl [45] to simplify the process, by downloading

the script directly from GitHub before running it locally:

$ URL=https://raw.githubusercontent.com/\

bionitio-team/bionitio/master/boot/bionitio-boot.sh

$ curl -sSf $URL | bash -s -- -i python -n newproj -c BSD-3-Clause

Alternatively, the bootstrap script can be run from a Docker container published on

DockerHub (https://cloud.docker.com/u/bionitio/repository/docker/bionitio/bionitio-boot):

$ docker run -it -v "$(pwd):/out" --rm bionitio/bionitio-boot \

-i python -n newproj -c BSD-3-Clause

The user may optionally specify an author name and email address, which will be substituted

for placeholders in the source code and documentation at appropriate places:

$ bionitio-boot.sh -i python -n newproj -c BSD-3-Clause \

-a "Example Author" -e example.email@institute.org

Finally, the user may specify a GitHub username. In this circumstance the bootstrap script

will create a new remote repository under the specified project name on GitHub and push

the project to that repository:

$ bionitio-boot.sh -i python -n newproj -c BSD-3-Clause \

-a "Example Author" -e example.email@institute.org -g example_github_user

Step 3: run the test suite, and optionally setup continuous integration testing

21

Each new repository created by the bootstrap script contains a testing directory called

"functional_tests". Within that directory is an automated testing shell script called (in this

example) "newproj-test.sh" and a sub-directory of test data and corresponding expected

outputs. The test script can be run like so:

$ newproj-test.sh -p newproj -d test_data

The test script reports how many tests passed and failed, and an optional -v (to enable

verbose mode) will cause it to report more details about each test case that is run.

Obviously, the test cases are specific to the expected behaviour of the prototypical

bioinformatics tool implemented by Bionitio. It is expected that the user will replace these

tests to suit the requirements of their new project. Despite this, the user will benefit from

much of the testing infrastructure provided by the script.

If the user has created a remote repository for their project on GitHub, they can quickly

enable continuous integration testing via Travis CI. Each new project created by Bionitio

includes the necessary Travis configuration files that are needed to install the prototypical

bioinformatics tool and run the integration and unit test scripts.

From this point onwards we expect that the user will go on to modify the program in order to

carry out their intended task. This includes changing the code of the program itself, updating

library dependencies, and importantly, adding appropriate test cases.

Conclusions

Software development is a complex task, involving many concepts and processes that can

be daunting for beginners. Many bioinformaticians are not trained in software engineering,

and research-oriented projects have limited budgets for quality assurance. The results-

22

driven focus of science means that many important non-functional software requirements are

often overlooked. Unfortunately these factors mean that shortcuts are often taken for the

sake of making something "that works", leading to a proliferation of lower-quality

bioinformatics tools.

Bionitio takes a pragmatic approach to addressing this problem. Our ambition is to help

beginner and intermediate bioinformaticians develop good habits early on. We aim to

achieve this by automating much of the drudgery involved in setting up new projects by

providing a simple working example that has the necessary boilerplate in place. By providing

a fast and simple way to start new projects from solid foundations we believe that good

practices are more likely to be adopted.

The challenges faced by the bioinformatics and science communities in building better

quality software are well known, and there is no shortage of practical recommendations to be

found in the literature. These guidelines are undoubtedly useful to beginners, however, we

believe they fall short in two ways. First, they are spread over multiple manuscripts that only

partially overlap in their recommendations, therefore some level of consolidation is needed.

Second, they are static artefacts that point to good practices but do not remove the

considerable burden of applying them in real code. These two observations motivated the

creation of Bionitio, both as a way of collecting commonly recommended best practices, and

as a way of demonstrating and facilitating their use. Therefore a significant contribution of

our work is to build a tool that can both illustrate best practices by example but also make it

easy to use them in new projects. In this sense Bionitio takes a much more active role in the

dissemination and compliance with these principles.

Role in education and training

23

In very recent work Tractenberg et al have developed a Mastery Rubric for Bioinformatics

with the goal of better defining skills development and competencies in the discipline [46]. In

this framework, competency in computational methods ranges through five levels, from

novice (stage 1) to independent bioinformatics practitioner (stage 5). One of the goals of

Bionitio is to support education and training for advancing bioinformaticians from stage 3 -

learning best practices in programming, and writing basic code - to stage 5 - developing new

software that is useful, efficient, standardized, well-documented and reproducible. As an

example of this application, Bionitio was used as the basis for a whole-day workshop on best

practices in bioinformatics software development at the Australian Bioinformatics and

Computational Biology Society (ABACBS) Annual Conference in November 2018 [47],

delivered to an audience of 50 bioinformaticians from research and clinical institutes around

Australia. In the first half of the workshop participants learnt how to set up a new software

repository using Bionitio, allowing time for exploration of the codebase, discussion of key

aspects of quality software, and an explanation of the processes that are automated by

Bionitio. In the second half of the workshop participants learnt about test-driven development

(TDD) and undertook an exercise to extend the codebase with new features, documentation,

corresponding test cases, and linkage to revision control and continuous integration testing.

In this setting, Bionitio's design as a simple-yet-realistic bioinformatics exemplar provides

both a common codebase for coordination of workshop materials and an extensible platform

for the delivery of hands-on practical activities. Additionally, by providing complete working

examples in many different languages, Bionitio acts as a kind of "Rosetta Stone" and is

therefore likely an excellent vehicle for comparative programming skills transfer.

Alignment with FAIR Principles and OSS Recommendations

In an effort to facilitate continued benefit from the digital assets related to data-intensive

science, representatives from academia, industry, funding agencies, and publishers have

proposed the FAIR Data Principles that aim to make experimental artefacts findable,

24

accessible, interoperable and reusable for machines and people [48]. Jiménez et al have

argued that poor development practices result in lower quality outputs that negatively impact

reproducibility and reusability of research [49], and propose four principles for open source

software development (OSS recommendations) that align well with the FAIR principles: 1)

make source code publicly accessible from day one; 2) make software easy to discover by

providing software metadata via a popular community registry; 3) adopt a licence and

comply with the licence of third-party dependencies; and 4) define clear and transparent

contribution, governance and communication processes. Tools developed with Bionitio have

a head start on satisfying both the FAIR principles and the first three OSS recommendations:

● they are publicly accessible in GitHub repositories with clearly indicated standard

open source licences and user documentation;

● they are interoperable with other tools via standardised inputs and outputs and

interfaces that follow long-established conventions;

● they are re-usable by virtue of the adoption of standard build procedures, the

provision of clear documentation relating to installation and usage, containerisation

with Docker, and integration into CWL;

● where appropriate, specific versions (with defined version numbers) can be made

findable by the allocation of Digital Object Identifiers facilitated by Zenodo [50]

through GitHub.

Importantly, Bionitio facilitates compliance with these principles, which is seen by Jiménez et

al as the final (and, in our opinion, most difficult) step in organisational adoption.

Availability of supporting source code and

requirements

25

● Project name: Bionitio

● Project home page: https://github.com/bionitio-team/bionitio

● Operating system(s): Any POSIX-like system.

● Programming language: Users can choose from: C, C++, C#, Clojure, Java,

Javascript, Haskell, Perl, Python, R, Ruby, Rust

● Other requirements: BASH, curl and git are required for bionitio-boot.sh.

● License: MIT

● RRID: SCR_017259

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Competing interests: The authors declare that they have no competing interests.

Funding: BP is supported by a Victorian Health and Medical Research Fellowship. HD

is supported by an Australian Government Research Training Program (RTP) Scholarship,

an Australian Genomics Health Alliance top up scholarship and a Murdoch Children’s

Research Institute top up scholarship. AL is supported by an Australian Government

Research Training Program (RTP) Scholarship. PG is supported by an Australian

Government Research Training Program (RTP) Scholarship.

Authors' contributions: TS, AL, HD and BP conceived of the project. All authors

contributed to the design, implementation, testing and documentation of Bionitio. AS, CS,

AL, HD, PG and BP contributed to manuscript drafting. All authors contributed to manuscript

proofreading and final editing.

Acknowledgements: The authors would like to thank Melbourne Bioinformatics for

providing computing resources for the development of Bionitio, and to the many users of the

tool who have provided feedback about its use.

https://github.com/bionitio-team/bionitio

26

References

1. Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016;533:452–4.

2. Wilson G. Software Carpentry: lessons learned. F1000Res. 2014;3:62.

3. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best practices
for scientific computing. PLoS Biol. 2014;12:e1001745.

4. Verma D, Gesell J, Siy H, Zand M. Lack of software engineering practices in the
development of bioinformatics software. ICCGI. 2013;2013:57–62.

5. Segal J, Morris C. Developing Scientific Software. IEEE Softw. 2008;25:18–20.

6. Hannay JE, MacLeod C, Singer J, Langtangen HP, Pfahl D, Wilson G. How Do Scientists
Develop and Use Scientific Software? Proceedings of the 2009 ICSE Workshop on Software
Engineering for Computational Science and Engineering. Washington, DC, USA: IEEE
Computer Society; 2009. p. 1–8.

7. Merali Z. Error: why scientific programming does not compute. Nature. 2010;467:775–7.

8. Joppa LN, McInerny G, Harper R, Salido L, Takeda K, O’Hara K, et al. Troubling Trends in
Scientific Software Use. Science. American Association for the Advancement of Science;
2013;340:814–5.

9. Baxter SM, Day SW, Fetrow JS, Reisinger SJ. Scientific software development is not an
oxymoron. PLoS Comput Biol. 2006;2:e87.

10. Lawlor B, Walsh P. Engineering bioinformatics: building reliability, performance and
productivity into bioinformatics software. Bioengineered. 2015;6:193–203.

11. List M, Ebert P, Albrecht F. Ten Simple Rules for Developing Usable Software in
Computational Biology. PLoS Comput Biol. 2017;13:e1005265.

12. Taschuk M, Wilson G. Ten simple rules for making research software more robust. PLoS
Comput Biol. 2017;13:e1005412.

13. Prins P, de Ligt J, Tarasov A, Jansen RC, Cuppen E, Bourne PE. Toward effective
software solutions for big biology. Nat Biotechnol. 2015;33:686–7.

14. Umarji M, Seaman C, Gunes Koru A, Liu H. Software Engineering Education for
Bioinformatics [Internet]. 2009 22nd Conference on Software Engineering Education and
Training. 2009. Available from: http://dx.doi.org/10.1109/cseet.2009.44

15. Howison J, Deelman E, McLennan MJ, Ferreira da Silva R, Herbsleb JD. Understanding
the scientific software ecosystem and its impact: Current and future measures. Res Eval.
Narnia; 2015;24:454–70.

16. Leprevost F da V, Barbosa VC, Francisco EL, Perez-Riverol Y, Carvalho PC. On best
practices in the development of bioinformatics software. Front Genet. 2014;5:199.

17. Russell PH, Johnson RL, Ananthan S, Harnke B, Carlson NE. A large-scale analysis of
bioinformatics code on GitHub. PLoS One. 2018;13:e0205898.

http://dx.doi.org/10.1109/cseet.2009.44

27

18. Seemann T. Ten recommendations for creating usable bioinformatics command line
software. Gigascience. 2013;2:15.

19. Carey MA, Papin JA. Ten simple rules for biologists learning to program. PLoS Comput
Biol. 2018;14:e1005871.

20. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al.
Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods.
2015;12:115–21.

21. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda:
sustainable and comprehensive software distribution for the life sciences. Nat Methods.
2018;15:475–6.

22. Docker [Internet]. [cited 2019 Jul 8]. Available from: https://www.docker.com/

23. Amstutz P, Crusoe MR, Tijanić N, Chapman B, Chilton J, Heuer M, et al. Common
Workflow Language, v1.0 [Internet]. 2016. Available from:
https://doi.org/10.6084/m9.figshare.3115156.v2

24. Jackman SD, Mozgacheva T, Chen S, O’Huiginn B, Bailey L, Birol I, et al. ORCA: A
Comprehensive Bioinformatics Container Environment for Education and Research.
Bioinformatics [Internet]. 2019; Available from:
http://dx.doi.org/10.1093/bioinformatics/btz278

25. Belmann P, Dröge J, Bremges A, McHardy AC, Sczyrba A, Barton MD. Bioboxes:
standardised containers for interchangeable bioinformatics software [Internet]. GigaScience.
2015. Available from: http://dx.doi.org/10.1186/s13742-015-0087-0

26. O’Connor BD, Yuen D, Chung V, Duncan AG, Liu XK, Patricia J, et al. The Dockstore:
enabling modular, community-focused sharing of Docker-based genomics tools and
workflows. F1000Res. 2017;6:52.

27. Crouch S, Hong NC, Hettrick S, Jackson M, Pawlik A, Sufi S, et al. The Software
Sustainability Institute: Changing Research Software Attitudes and Practices. Comput Sci
Eng. IEEE Computer Society; 2013;15:74–80.

28. Greenfeld AR. Cookiecutter [Internet]. Available from:
https://github.com/audreyr/cookiecutter

29. Travis CI - Test and Deploy Your Code with Confidence [Internet]. [cited 2019 Mar 21].
Available from: https://travis-ci.org/

30. The Git Project. Git [Internet]. Git. [cited 2019 Apr 14]. Available from: https://git-
scm.com/

31. IEEE and The Open Group. The Open Group Base Specifications Issue 7, 2018 edition
[Internet]. 2018. Report No.: 1003.1-2008. Available from:
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html

32. Free Software Foundation, Inc. GNU Coding Standards [Internet]. 2019 Feb. Available
from: https://www.gnu.org/prep/standards/standards.html

33. Lee BD. Ten simple rules for documenting scientific software. PLoS Comput Biol.
2018;14:e1006561.

34. McIlroy MD, Pinson EN, Tague BA. UNIX Time-Sharing System: Foreword. Bell System

https://www.docker.com/
https://doi.org/10.6084/m9.figshare.3115156.v2
http://dx.doi.org/10.1093/bioinformatics/btz278
http://dx.doi.org/10.1186/s13742-015-0087-0
https://github.com/audreyr/cookiecutter
https://travis-ci.org/
https://git-scm.com/
https://git-scm.com/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://www.gnu.org/prep/standards/standards.html

28

Technical Journal. Wiley Online Library; 1978;57:1899–904.

35. Andrew H, David T. The Pragmatic Programmer: From Journeyman to Master. Addison
Wesley Longman, Redwood City; 2000.

36. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely
available Python tools for computational molecular biology and bioinformatics.
Bioinformatics. 2009;25:1422–3.

37. Karimzadeh M, Hoffman MM. Top considerations for creating bioinformatics software
documentation. Brief Bioinform. 2018;19:693–9.

38. Preston-Werner T. Semantic Versioning 2.0.0 [Internet]. [cited 2019 Mar 4]. Available
from: https://semver.org/spec/v2.0.0.html

39. Raymond ES. The Art of UNIX Programming. Addison-Wesley Professional; 2003.

40. Gruening B, Sallou O, Moreno P, da Veiga Leprevost F, Ménager H, Søndergaard D, et
al. Recommendations for the packaging and containerizing of bioinformatics software.
F1000Res [Internet]. 2019 [cited 2019 Mar 31];7. Available from:
https://f1000research.com/articles/7-742/v2/pdf

41. Choose an open source license [Internet]. [cited 2019 Mar 4]. Available from:
https://choosealicense.com/

42. Johnson M. Building a Better ReadMe. Technical Communication. 1997;44:28–36.

43. Perez-Riverol Y, Gatto L, Wang R, Sachsenberg T, Uszkoreit J, Leprevost F da V, et al.
Ten Simple Rules for Taking Advantage of Git and GitHub. PLoS Comput Biol.
2016;12:e1004947.

44. Glass RL. Facts and Fallacies of Software Engineering. Addison-Wesley Professional;
2003.

45. The Curl developers. Curl [Internet]. Curl: command line tool and library for transferring
data with URLs. [cited 2019 Apr 14]. Available from: https://curl.haxx.se/

46. Tractenberg RE, Lindvall JM, Attwood TK, Via A. The Mastery Rubric for Bioinformatics:
supporting design and evaluation of career-spanning education and training. bioRxiv
[Internet]. biorxiv.org; 2019; Available from:
https://www.biorxiv.org/content/10.1101/655456v1.abstract

47. ABACBS-2018 Annual Conference [Internet]. [cited 18 June, 2019]. Available from:
https://www.abacbs.org/conference2018/about

48. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The
FAIR Guiding Principles for scientific data management and stewardship. Sci Data.
2016;3:160018.

49. Jiménez RC, Kuzak M, Alhamdoosh M, Barker M, Batut B, Borg M, et al. Four simple
recommendations to encourage best practices in research software. F1000Res [Internet].
2017;6. Available from: http://dx.doi.org/10.12688/f1000research.11407.1

50. Zenodo [Internet]. [cited 18 June, 2019]. Available from: https://zenodo.org/

https://semver.org/spec/v2.0.0.html
https://f1000research.com/articles/7-742/v2/pdf
https://choosealicense.com/
https://curl.haxx.se/
https://www.biorxiv.org/content/10.1101/655456v1.abstract
https://www.abacbs.org/conference2018/about
http://dx.doi.org/10.12688/f1000research.11407.1
https://zenodo.org/

29

Additional Files

File name: Additional file 1

File format: Microsoft Word

Title of data: Table 1

Description of data: Contents of Table 1 to be included in the manuscript where indicated.

language build/deploy FASTA reading command line
argument parsing

unit testing logging static analysis code format

C make kseq getopt assert custom lint clang-format

C++ cmake Seqan boost::program_optio
ns

catch boost::log cppcheck clang-format

C# dotnet .Net Bio Microsoft.Extensions.
CommandLineUtils

Microsoft.Visua
lStudio.TestTo
ols.UnitTesting

Serilog N/A N/A

Clojure lieningen Bioclojure clojure.tools.cli clojure.test timbre Eastwood cljfmt

Java maven biojava Apache Commons junit custom checkstyle checkstyle

Javascript node fasta-parser commander mocha winston N/A standard

Haskell stack BioHaskell optparse-applicative hspec hslogger hlint N/A

Perl N/A BioPerl Getopt::ArgParese Test::More Log::Log4perl perlcritic perltidy

Python pip biopython argparse unittest logging pylint N/A

R R seqinr optparse testthat logging lintr N/A

Ruby gem bioruby optparse Test::Unit logger N/A N/A

Rust cargo bio::io::fasta argparse native test
feature of Rust

log, log4rs N/A rustfmt

Table 1. Standard libraries and tools employed by each implementation of Bionitio. Instances where no appropriate option was available are

marked with N/A.

Table Click here to access/download;Table;Additional file 1.docx

https://www.editorialmanager.com/giga/download.aspx?id=79148&guid=94c0639b-066c-4967-b00b-c487b276c181&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=79148&guid=94c0639b-066c-4967-b00b-c487b276c181&scheme=1

Figure Click here to access/download;Figure;figure1.png

https://www.editorialmanager.com/giga/download.aspx?id=79149&guid=0ffefeb0-159b-4c5b-9c7c-a5b6996db672&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=79149&guid=0ffefeb0-159b-4c5b-9c7c-a5b6996db672&scheme=1

SVG version of figure1.png

Click here to access/download
Supplementary Material

figure1.svg

https://www.editorialmanager.com/giga/download.aspx?id=79151&guid=6509dc23-16bf-47ee-ad9d-4917cfe1829b&scheme=1

16 July 2019

To the Editor-in-Chief and Executive Editor, GigaScience,

We thank the Editor and Reviewers for their insightful and constructive comments on our submission
"Bionitio: demonstrating and facilitating best practices for bioinformatics command-line software" (GIGA-
D-19-00145). In the following document we respond to each of the reviewer comments and say what has
changed in the software and text to address each point. In the revised manuscript we have used red font
to indicate changes that we have made to the body of the text. We believe that the suggested changes
have significantly improved the quality of the paper and the corresponding Bionitio tool.

The responses here are presented in the order that the comments appear in the manuscript review.

Editor Comments

The reviewers agree that the tool itself is a useful contribution, overall. However, they also have
some constructive suggestions for improving the manuscript.

In particular, I agree with reviewer 1 that, ideally, the manuscript should also present "an
evidence-backed testimony about the tool's efficacy in correcting the problems stated in the
introduction."
I understand that a typical, quantitative benchmarking exercise may not be possible for this type
of tool, but reviewer 1 has some good pointers regarding issues that should be discussed in more
detail (for example, regarding FAIR principles and how your approach suggested in the paper can
help in this regard).

Reviewer 2 has some notes on installation and running the tool that may give you some hints for
minor improvements or corrections.

The reviewers also suggest to provide the tool via a container (e.g. docker), especially as it is
meant to be helpful for beginners.

In addition, please register any new software application in the SciCrunch.org database to receive
a RRID (Research Resource Identification Initiative ID) number, and include this in your
manuscript. This will facilitate tracking, reproducibility and re-use of your tool.

Response

We concur with the Editor that a qualitative benchmarking exercise is challenging for this type of tool, and
that a detailed discussion of our alignment with FAIR principles is a valuable contribution to the paper. In
light of these remarks we have included a section on how Bionitio enables bioinformaticians to easily
adopt many of the key FAIR principles and have additionally linked this to recent work on related
recommendations for Open Source research software. Disclaimer: a Bionitio author (B Pope) a co-author
on the latter recommendations.

Response to reviewer comments Click here to access/download;Personal
Cover;bionitio_response_to_reviewers.pdf

https://www.editorialmanager.com/giga/download.aspx?id=79152&guid=dd013e34-13ac-4b48-8afa-14d7519ae762&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=79152&guid=dd013e34-13ac-4b48-8afa-14d7519ae762&scheme=1

We have attempted to address issues related to installation and running the tool outlined by Reviewer 2
and have provided Docker containers for each of the Bionitio implementations, as well as the bootstrap
script, and updated the documentation accordingly.

We have applied for registration of Bionitio through SciCrunch.org and received an RRID of
SCR_017259. We have included this in the manuscript.

Reviewer 1

Comment 1 (and comment 12)

The limitation of this manuscript, in my mind, is mostly that it reads like more of an instruction
manual and list of general best practices than a detailed technical write up about the contribution
made, and an evidence-backed testimony about its efficacy in correcting the problems stated in
the introduction.

Response

We believe that one of the contributions of Bionitio is that it provides a consolidation of many disparate
sources of best practices for software development in bioinformatics. Indeed, the features present in
Bionitio are distilled from more than 25 different partially overlapping recommendations. We also believe
that it is a contribution of our manuscript to explicitly link those recommendations to the features present
in our tool. Therefore, there is necessity to list our sources and argue for their significance. Another key
contribution of our paper is to show how easily a new project can be created with our tool, as a step-by-
step guide to its main features.

However, we also agree that our manuscript could have made our contributions clearer and argued
further for its efficacy in correcting the problems stated in the introduction.

We also agree with the Editor that "a typical, quantitative benchmarking exercise may not be possible for
this type of tool".

In light of these comments we have made considerable changes to the manuscript.

The following text was added to the conclusion to show how Bionitio helps users to adopt FAIR principles
and related recommendations for open source software:

Alignment with FAIR Principles and OSS Recommendations

In an effort to facilitate continued benefit from the digital assets related to data-intensive
science, representatives from academia, industry, funding agencies, and publishers
have proposed the FAIR Data Principles that aim to make experimental artefacts
findable, accessible, interoperable and reusable for machines and people [48]. Jiménez
et al have argued that poor development practices result in lower quality outputs that
negatively impact reproducibility and reusability of research [49], and propose four
principles for open source software development (OSS recommendations) that align well

with the FAIR principles: 1) make source code publicly accessible from day one; 2) make
software easy to discover by providing software metadata via a popular community
registry; 3) adopt a licence and comply with the licence of third-party dependencies; and
4) define clear and transparent contribution, governance and communication processes.
Tools developed with Bionitio have a head start on satisfying both the FAIR principles
and the first three OSS recommendations:

● they are publicly accessible in GitHub repositories with clearly indicated standard
open source licences and user documentation;

● they are interoperable with other tools via standardised inputs and outputs and
interfaces that follow long-established conventions;

● they are re-usable by virtue of the adoption of standard build procedures, the
provision of clear documentation relating to installation and usage,
containerisation with Docker, and integration into CWL;

● where appropriate, specific versions (with defined version numbers) can be made
findable by the allocation of Digital Object Identifiers facilitated by Zenodo [50]
through GitHub.

Importantly, Bionitio facilitates compliance with these principles, which is seen by
Jiménez et al as the final (and, in our opinion, most difficult) step in organisational
adoption.

The following text was added to the conclusion to outline Bionitio's role in education and training by
relating it to the Mastery Rubric for Bioinformatics proposed by Tractenberg et al, along with our own
experience in using it to deliver a national bioinformatics workshop (in Australia):

Role in education and training

In very recent work Tractenberg et al have developed a Mastery Rubric for
Bioinformatics with the goal of better defining skills development and competencies in
the discipline [46]. In this framework, competency in computational methods ranges
through five levels, from novice (stage 1) to independent bioinformatics practitioner
(stage 5). One of the goals of Bionitio is to support education and training for advancing
bioinformaticians from stage 3 - learning best practices in programming and writing basic
code - to stage 5 - developing new software that is useful, efficient, standardized, well-
documented and reproducible. As an example of this application, Bionitio was used as
the basis for a whole-day workshop on best practices in bioinformatics software
development at the Australian Bioinformatics and Computational Biology Society
(ABACBS) Annual Conference in November 2018 [47], delivered to an audience of 50
bioinformaticians from research and clinical institutes around Australia. In the first half of
the workshop participants learnt how to set up a new software repository using Bionitio,
allowing time for exploration of the codebase, discussion of key aspects of quality
software, and an explanation of the processes that are automated by Bionitio. In the
second half of the workshop participants learnt about test-driven development (TDD)
and undertook an exercise to extend the codebase with new features, documentation,
corresponding test cases, and linkage to revision control and continuous integration
testing. In this setting, Bionitio's design as a simple-yet-realistic bioinformatics exemplar
provides both a common codebase for coordination of workshop materials and an
extensible platform for the delivery of hands-on practical activities. Additionally, by
providing complete working examples in many different languages, Bionitio acts as a
kind of "Rosetta Stone" and is therefore likely an excellent vehicle for comparative
programming skills transfer.

We have also expanded the third paragraph in the Conclusions to emphasise why we think Bionitio is a
significant contribution on top of the already existing recommendations in the literature (and the main
motivation for its creation):

The challenges faced by the bioinformatics and science communities in building better quality
software are well known, and there is no shortage of practical recommendations to be found in
the literature. These guidelines are undoubtedly useful to beginners, however we believe they fall
short in two ways. First, they are spread over multiple manuscripts that only partially overlap in
their recommendations, therefore some level of consolidation is needed. Second, they are static
artefacts that point to good practices but do not remove the considerable burden of applying them
in real code. These two observations motivated the creation of Bionitio, both as a way of
collecting commonly recommended best practices, and as a way of demonstrating and facilitating
their use. Therefore, a significant contribution of our work is to build a tool that can both illustrate
best practices by example but also make it easy to use them in new projects. In this sense
Bionitio takes a much more active role in the dissemination and compliance with these principles.

We have also emphasised the contribution that this tool makes to improving software development in
bioinformatics as per comments 13,14,15 and 21 below.

Comment 2

(section 1; paragraph 2) How is "correctness" evaluated in your mind? In research truth is often
unknown by definition, so perhaps choose a less loaded word or elaborate on how this is
evaluated.

Response

We agree with the reviewer that truth can be elusive in science, and therefore by correctness we mean
that the software implements its intended functionality; so it is correct in the sense that it meets its
specification (whether that specification be formally defined, or, more likely, part of the informal intentions
that are known to the author(s)). Following the advice of the reviewer we have used a less loaded way to
describe this, and changed the manuscript as follows:

Given the results-driven nature of research, the functional aspects of scientific programs (e.g.
correctness whether expected inputs produce expected outputs) are heavily emphasised at the
expense of the non-functional ones (e.g. usability, maintainability, interoperability, efficiency).

Comment 3

Duplicate heading at start of paper? Both "Findings" and "Background"

Response

We believe that this formatting follows the suggested GigaScience Technical Note style
(https://academic.oup.com/gigascience/pages/technical_note), where in the main text, "Findings"
is a larger heading including the subheadings Background, Implementation, Methods,
Conclusions, etc. If our interpretation of the formatting guidelines is incorrect, we are confident
that this can be fixed in the final proof.

Comment 4

(section 1; paragraph 2, last sentence) Some "specifications" or recommendations, such as
Nature Publishing's software checklist, and some 10-simple-rules articles in pnas related to
scientific software. Are these the types of things you're referring to? If so, might be worth
mentioning how they can exist but perhaps are harder to define for a specific (quickly moving)
domain beyond the "basics".

Response

In this part we are referring to "software requirements specifications" that are commonly used in
Software Engineering to define the functional and non-functional requirements of software being
developed. We have changed the text to "software requirements specifications (SRSs)" to clarify
this point.

Comment 5

(section 1; paragraph 4) abovementioned -> above-mentioned

Response

Corrected.

Comment 6

(section 1; second-last paragraph) "more likely to adopt good practices" <- have you witnessed
this in the wild with bionitio, yet? I agree that in principle I'd expect this result, but giving students
or researchers the tool and saying nothing else, then coming back at the end of the process, is
this the outcome we get? The biggest places I see this not continuing beyond the boilerplate is
documentation and testing. This could potentially also be answered if Cookiecutter has
successes that you could reference.

Response

We agree with the reviewer that this is an expected result, however we have not formally tested it, and,
for now it sits here as a hypothesis. We have reworded the sentence to make this point clearer:

The key point is that they are building on solid foundations, and because a lot of the mundane-
but-important boilerplate is provided by Bionitio, there are fewer barriers to adopting good
practices from the start.

Comment 7

(command line argument parsing) have you considered integrating these command-line
descriptions with standard tools for shipping workflows to C(G)PUs, like Common Workflow
Language (commonwl.org), Boutiques (boutiques.github.io), or others? It would be an additional
feature you could add on top of each language-specific implementation that would make not only
consuming the tools even more uniform, but enable scaling them out for large datasets more
accessible for developers.

Response

We agree with the reviewer that this would be a useful additional feature, and therefore have added
example CWL tool wrappers for each implementation of Bionitio. This addition was greatly facilitated by
the fact that each Bionitio implementation has the same command line interface, and (now) comes with a
Docker container. We have updated the online documentation for Bionitio to include information about
this, and have made the following changes to the manuscript:

In the Background section:

Operating system virtualisation services, such as Docker [22], and workflow specification
languages, such as the Common Workflow Language (CWL) [23], have improved
portability and reproducibility of tools and pipelines [12,24–26].
...

Specifically, every new Bionitio-created project includes … containerisation with Docker, and a
CWL wrapper.

In the Design and Implementation section:

CWL tool wrapper

Bioinformatics pipelines — where multiple tools are chained together to perform an overall
analysis — create further challenges for reproducible science. This has motivated the creation of
pipeline frameworks that allow the logic of such computations to be abstracted from the details of
how they are executed. An emerging standard in this area is the Common Workflow Language
(CWL) that is supported by several popular workflow engines. CWL comprises two declarative
sub-languages: workflow descriptions, that define data flow patterns between pipeline stages;
and command line tool descriptions, that define the interfaces of tools in a platform independent
manner. Each Bionitio implementation provides a CWL tool description "bionitio.cwl", that
facilitates its incorporation into CWL pipelines, and takes advantage of CWL's support for
invoking programs within Docker containers.

We have also updated the README.md files for each implementation of Bionitio to include information
about how to use the CWL tool wrapper and included running the CWL tool wrapper within Travis CI
testing.

Comment 8

(software packaging) there is also no mention of virtualization/containerization here, such as
Docker or Singularity, that would also increase the portability of these packages. Have the
authors considered this to further minimize this issue?

Response

We agree with the reviewer that this would be a useful additional feature, and therefore have added
example Docker container definitions for each implementation of Bionitio, and also the bootstrap script.
We have made the following changes to the manuscript:

In the Abstract:

Key features include … , and containerisation.

In the Background section:

Specifically, every new Bionitio-created project includes … containerisation with Docker, and a
CWL wrapper.

In the Design and Implementation section:

Sub-heading changed from "Standardised software packaging using programming language
specific mechanisms" to "Standardised software packaging and containerisation".

Text added:

Standard packaging also helps with containerisation, which is becoming increasingly
useful in bioinformatics [40]. Docker containers are a popular implementation of this
concept, where the underlying operating system is virtualised and packaged alongside
tools and their dependencies. This makes it easy to install "containerised" software on
any platform that supports Docker, and facilitates reproducibility by enabling the exact
same software build to be used on every system. Each Bionitio implementation comes
with a "Dockerfile" that encodes all the necessary information needed to create a
containerised version of the tool. As an added benefit, the Docker container is used in
Travis Continuous Integration testing, which both simplifies the use of Travis and also
enables the functionality of the container itself to be included in the tests.

In the Methods section we added the following text:

Alternatively, the bootstrap script can be run from a Docker container published on DockerHub
(https://cloud.docker.com/u/bionitio/repository/docker/bionitio/bionitio-boot):

$ docker run -it -v "$(pwd):/out" --rm bionitio/bionitio-boot \

-i python -n newproj -c BSD-3-Clause

Comment 9

(methods; choosing a language) do you have any way to recommend language selection for
users? If they're truly new to all of these, maybe coming from a MATLAB background like many
who learned to program through coursework, what guidance does Bionitio provide here? Is
Python a general default, or just for this example? If it is, where is that justified? The caveat with
providing 12 options is that a bit of hand holding may be required to guide the choice for much of
your target audience.

Response

We agree with the reviewer that choice of programming language can be difficult for absolute beginners.
It is difficult to get empirical evidence to support any language default (and for this reason Bionitio does
not have a default language). However, the selection of implementation languages chosen was guided by
the results reported in [13]. From an analysis of 1,720 bioinformatics repositories on GitHub they
observed: "The main dataset contained a greater proportion of code written in interpreted or hybrid
interpreted/compiled (such as Python) and dynamically typed languages" and "Our data support the
intuition that Java, Python and R are more succinct than lower-level languages such as C and C++"
Taking these observations together, Python appears to be reasonable starting language for beginners. To
assist beginners with their choice of language we have updated the README (https://github.com/bionitio-
team/bionitio) documentation for Bionitio to include:

If you are new to programming, and do not know which programming language to use, then we
recommend picking one of the high-level interpreted languages that are popular in Bioinformatics,
such as Python or R. You may also need to seek advice from your peers about which
language(s) are most appropriate for your purposes. We have tried to cover as many popular
languages as possible, and apologise if your preference is not currently available. However, we
also welcome new implementations of Bionitio in languages not already covered.

We have also added the following text to the manuscript:

For users relatively new to programming, with no prior constraints on their choice of language, we
recommend they choose a high-level interpreted language such as Python or R.

Comment 10

can you justify the claims about it being an "excellent vehicle for education"? Any sort of case
study or example from similar tools being effective, etc…

Response

We believe that Bionitio is fairly unique in its approach to templating best practices in Bioinformatics
software development, and therefore it is unlikely that such an approach has been formally studied in the
context of education practices, and unfortunately we are not aware of such resources (even beyond
bioinformatics). However, as mentioned in our cover letter, we have used Bionitio as the basis for a
popular (whole day) workshop hosted at the Australian Bioinformatics and Computational Biology Society
(ABACBS) annual conference in 2018 (https://www.abacbs.org/conference2018) with ~50 paying
attendees from around the country. We conducted a survey of the attendees to assess the quality and
utility of the workshop. In response to the question "This was a useful workshop that enhanced my
knowledge and skills" out of 18 respondents 94.44% agreed or strongly agreed. Given the success of the
initial workshop, we ran another in May 2019, with 14 attendees. From formal feedback received from the
second workshop, in response to the question "My overall impression is that this is a useful workshop that
enhanced my knowledge and skills" we received a score of 4.8/5 from 11 respondents. We appreciate
that this is anecdotal evidence and is not supported by a rigorous experiment and therefore we have not
discussed the workshop feedback in the manuscript. However, we have reduced the strength of our claim
in the manuscript by adding a qualifier:

Additionally, by providing complete working examples in many different languages, Bionitio acts
as a kind of "Rosetta Stone" and is therefore likely an excellent vehicle for comparative
programming skills transfer.

We have also addressed Bionitio's role in training and education more thoroughly in the Conclusion as
mentioned in our response to Comment 1 above.

Comment 11

figure 1 text is barely readable, and boxes are odd relative sizes with a fair amount of wasted
foreground (coloured) space. Colour doesn't seem to convey much information. I didn't find this
figure particularly useful or instructive. I.e. I don't know any better how I would use bionitio, or
what exactly it'll create (just that it draws from a boiler plate). Maybe repurpose this figure to be
more of a "schematic" of what is contained within a bionitio-created-project (is there a more
concise name for these?), and then a more streamlined version of what is currently here.

Response

We included this figure in the manuscript because it serves to visually represent how a new project is
started by the bootstrap script. We have found that this has been a particular issue of confusion for new
users, especially those who are unfamiliar with Git and GitHub. The colours represent the location of
code, either in GitHub (yellow) or the local machine (purple). To streamline this figure, we have removed
the grey background, replaced the external arrows with dashed lines. We will submit a high-resolution
version in our resubmission, and include a resolution-independent SVG version as well.

Comment 12

I felt that while the manuscript introduces a tool which is certainly of use to a community of
scientific software developers, the focus of the paper is more based on the justification of which
components are included in this tool, rather than the technical nature or efficacy of the
contribution. With guides that exist and "best practices" that were even mentioned in the 10-
simple-rules article, I believe the article would benefit from significant rewriting to be focused on
the contributions of these authors and their tool, rather than an extended summary of what are
commonly accepted as best practices for software development. While I acknowledge the novel
and valuable contribution presented in this paper, I feel the manuscript does not highlight this
contribution adequately.

Response

Thank you for recognising the utility of Bionitio. We believe this point is similar in to Comment 1 which we
have addressed in detail above.

Comment 13

One concern I have with making it easier for people to continue making their own tools is exactly
to the point mentioned at one point in the manuscript, of "never repeat yourself." In my area of
research, computational neuroscience, essentially every pipeline has been built handfuls of times,
and the answers aren't particularly replicable across implementations. This of course raises a
whole other set of issues in terms of the quality of software being produced, because even if we
encourage developers to adopt existing tools where possible, if they don't adopt the same ones
for the same tasks, how can we meaningfully compare their implementations? This ties in to the

FAIR principles, which I was surprised not to see mention of in this work, as they are closely
aligned with the aim of bionitio to my understanding. The missing piece in bionitio, of course,
would then be that of publishing tools and ensuring the findability of software that people will
make. This of course doesn't solve the issue, but at least enables the easier evaluation of various
implementations towards the same end. As mentioned above, the Boutiques initiative (disclaimer:
I am a co-lead on this project) makes efforts to make sure tools, once they exist, are able to be
shared/consumed FAIR-ly, so could potentially be referenced in a discussion on this point. The
paper of this tool is on Gigascience (https://doi.org/10.1093/gigascience/giy016) and a recent
poster focusing on FAIR software workflows can be found here:
https://doi.org/10.6084/m9.figshare.8143241.v2 . I would appreciate if the authors discussed this
point, the obvious risk that their tool introduces into the field by virtue of increasing the
accessibility of tool development, and how they propose their contribution is either worth this
added risk or how they intend on enabling the evaluation of it.

Response

We agree with the reviewer that there can be a tendency in bioinformatics and scientific computing to
reinvent the wheel, which can create challenges for replication and comparison. However, a key point is
that the purpose of Bionitio is not to merely make it easier for people to continue making their own tools or
make software development more accessible (though many other systems, such as IDEs, do this
already), but rather to help people to make better tools. We anticipate that many uses of Bionitio will be
for bespoke tools that are tailored to the specific needs of a research project - tools that do not already
exist. In our experience there is considerable demand in Bioinformatics for the creation of this type of
software. Even if these tools do not have a wide audience at the beginning, we still believe that there is
considerable value to be gained from the use of good programming practices from the outset of the
project, as discussed in the paper. We also agree with the reviewer that the FAIR principles are highly
relevant and have made considerable changes to the manuscript to address this issue, as per our
response to Comment 1. We thank the reviewer for bringing the Boutiques system to our attention.
Command-line Interface and packaging standardisation efforts provided by Boutiques and similar
systems such as CWL provide great utility in building usable and reproducible analyses. We commend
and support these initiatives. We have added CWL tool wrapper support to Bionitio as discussed in our
response to Comment 7 above.

Reviewer 2

Comment 14

I wonder if the command line is the best starting point for inexperienced programmers? And if not
starting with an IDE that provides similar templates would be better? The paper could therefore
discuss how bionitio can be used from an IDE. I also wonder if the team plan to provide bionitio
templates for some popular IDEs?

Response

We agree that providing support for IDE use may be of use to inexperienced programmers, however that
would be challenging to do in a way that is portable across: all the (12) language implementations of
Bionitio, the many popular IDEs that are currently in use, and the major operating systems. Considering
these challenges, we decided to make Bionitio agnostic with respect to the programming environment
employed by users. Users can use an IDE with Bionitio if they desire, but we do not plan to offer particular
support for any of the many options available.

Comment 15

are there some numbers that can document how much bionitio is used, and who the users are?
Perhaps something from GitHub?

Response

We do not currently have information about how much Bionitio is used and who the users are. We use it
ourselves on a regular basis, as do many of our colleagues. Many attendees of our workshops continue
to use it for their own work. Our experience shows that it offers considerable utility for a wide audience.

Comment 16

I tested bionitio-python in Ubuntu on Windows. It has Python2 as default, so by following the
instructions I could install the code (with Python2), but not run it. However, by installing the code
with pip3 I could use it as described in the documentation. But this solution may not be obvious
for beginner programmers, so the documentation should take this into account.

Response

Only Python 3 is currently supported by Bionitio. Python 3 is at least 10 years old, and Python 2 is now
officially considered a legacy system. New Python projects are encouraged to be written in Python 3. As
the reviewer notes, it is unfortunate that some operating systems still offer Python 2 as a default. As
suggested, we have updated the user documentation to make it clearer that Python 3 is required.
Specifically, we have replaced Python with "Python 3" on the main README.md for Bionitio
(https://github.com/bionitio-team/bionitio), and also added the text "Python 3 is required for this software."
on the README.md for the Python implementation of Bionitio (https://github.com/bionitio-team/bionitio-
python).

Comment 17

I also found that the example program treated invalid fasta files (for example setup.py) as empty
fasta files. I believe according to the documentation this should have resulted in an "invalid file"
exit value instead of success (zero).

Response

We thank the reviewer for identifying this mistake. Most FASTA parsing libraries are very liberal in what
they accept as valid input, and therefore do not raise errors on files that are not FASTA format. We had
originally intended to return an exit status of 3 for input files not in FASTA format, but this is challenging to
do when most standard libraries for parsing FASTA do not raise errors. Given this limitation, we have

decided to remove the exit status of 3 and have adjusted the documentation in the README file for each
Bionitio implementation accordingly.

Comment 18

In the documentation, C# was not mentioned as one of the available languages.
The integration with GitHub, however, did not work. When we ran the script, a different command-
line window was opened, asking for a GitHub password. When typing in the password, it was
shown in clear text. Nothing happened when hitting the Enter-key. The GitHub-repository was not
created.

Response

We thank the reviewer for pointing out the omission of C# in the list of available languages. We
have corrected this mistake in the README.md file for Bionitio (https://github.com/bionitio-
team/bionitio/blob/master/README.md) and in the user documentation
(https://github.com/bionitio-team/bionitio/wiki/2.-Set-up-a-project-with-bionitio).

We have not been able to reproduce the error with GitHub integration on Windows. However, we
have created an issue on our GitHub repository for Bionitio to look into this further, to see if it can
be reproduced (https://github.com/bionitio-team/bionitio/issues/73).

Comment 19

The C++ version requires a bit more manual configuration, since the `CMake`/`Make` install does
not copy the built executable to a standard location (such as usr/local/bin). It also depends on the
`seqan` library that has to be downloaded separately.

Response

We agree with the reviewer that the C++ version requires more manual configuration than some
of the other implementations of Bionitio. This is due to the limited nature of C++ software
packaging systems. We require the user to download the Seqan source code from
http://packages.seqan.de/seqan-library/seqan-library-2.1.1.tar.xz because we do not want to
include that source code in the Bionitio repository. We have added an 'install' target for the build
command now, so that the user can run 'make install' and have the executable copied into their
desired location and have updated the documentation accordingly (https://github.com/bionitio-
team/bionitio-cpp/blob/master/README.md). The default behaviour is to place the executable in
the same directory where the 'make' command was executed. It is also likely that the added
support for Docker will also help some users with this issue.

Reviewer 3

Comment 20

for Windows computer use case scenario, it only say to get Putty to login to Linux. I would
suggest the authors create a Virtualbox or Docker container (both virtualizations solutions are as
easy to install on Windows as you would install Skype), with some base ubuntu and some
working examples included of project structure generation with their tool.

Response

Currently Bionitio is not directly supported on Windows. Our user guide suggested that Windows
users might need to log into a Unix-like system to try it out. We have added the reviewer’s
suggestion that they may also like to consider the use of a virtualisation system such as
VirtualBox (https://github.com/bionitio-team/bionitio/wiki/1.-Set-up-your-computer). We agree with
the reviewer that the addition of Docker container support will be a benefit to Windows users.

Comment 21

It would be great to have a little discussion how it can help beginner developers, for example can
it be used in an educational setting when setting up projects for a bioinformatics class. It could be
also discussed how advanced developers can use that to get project structure initiated fast (I am
thinking Ruby on Rails or Django project initiation). What are the additional benefits for advanced
developers ?

Response

Yes, Bionitio is well suited to being used in an educational setting. We have developed and
delivered workshops on best practices in bioinformatics software development based on Bionitio.
We have added a new section to the manuscript on its role in education and training (see our
previous response to Comment 1 above). We agree that Bionitio can also help advanced users
get project structure initiated quickly. Indeed, we count ourselves as advanced users, and we
regularly use Bionitio for this purpose. We believe that the use-case suggested by the reviewer
(Ruby on Rails or Django project) is better solved by the Cookiecutter project, mentioned as
related work in the Background section where we note "Cookiecutter provides a more general-
purpose templating system that is best suited to starting new software systems in specific
programming languages, such as the instantiation of web applications based on particular web
framework libraries."

Additional changes to the manuscript

The following small improvements were made to the manuscript.

1) Affiliation updated for one author:

 Melbourne Genomics Health Alliance, Walter and Eliza Hall Institute, Parkville, Victoria, Australia.

2) A sentence in the Abstract was reworded to improve expression:

 Old sentence:

On the other hand, the barrier to entry in bioinformatics software development is high for
beginners, especially if they want to adopt good programming practices.

 Replacement:

In particular, for beginners, the barrier to entry in bioinformatics software development is high,
especially if they want to adopt good programming practices.

3) Text added to describe the optional --minlen command line argument in the Design and
Implementation section:

An optional command line argument --minlen can be supplied, causing the program to ignore
sequences with length strictly less than the given value.

4) Paragraph slightly reworded in the Design and Implementation section to improve expression:

Old paragraph:

In the remainder of this section we outline the main features incorporated into Bionitio's
prototypical tool that facilitate good programming practices and why they are important. In the
following section we demonstrate by example how Bionitio can be used to create a new software
project.

New paragraph with changes noted in red:

In the remainder of this section we outline the main features incorporated into Bionitio's
prototypical tool that facilitate good programming practices, and, where possible, relate them to
the relevant recommendations in the literature. In the section afterwards we demonstrate by
example how Bionitio can be used to create a new software project.

5) Replaced "in name of" with "for the sake of" in the Conclusion to improve expression.

6) We capitalised "Cookiecutter" in the Background section.

7) We shifted the sentence "(the $ sign indicates the command line prompt):" earlier in the text, to cover
the first use of the $ notation.

8) We improved the wording of the first sentence in the sub-section "Standardised software packaging
and containerisation" (and added an additional reference): "The installation process can be one of the
most cumbersome and frustrating parts of using bioinformatics software, because many tools do not
provide much assistance to the user [14], and complex dependency chains can clash with local settings
[10]."

9) Fixed the pluralisation in the Revision control sub-section: "implementations"

